Виды износа и причины их возникновения. Износ деталей промышленного оборудования

Износ деталей в ходе эксплуатации - процесс естественный. Сложные условия работы ТПС вызывают ускоренное появление у его деталей износов различного вида, которые приводят к изменению геометрических параметров деталей, увеличению между ними зазоров, появлению местных вырывов металла, изменению его поверхностной или внутренней структуры. Наиболее характерны износ от сил трения (механический), а также термический, электроэрозионный и коррозионный износы. Отдельные детали могут одновременно подвергаться нескольким видам износа.

Механический износ может возникать вследствие молекулярного схватывания, а также проявляться в виде окислительного, теплового, абразивного и осповидного износов.

1. Абразивный износ - это результат срезания металла попавшими на его поверхность твердыми частицами. Он характерен для смазываемых, но не защищенных от внешних воздействий поверхностей.

2. Тепловой износ происходит при трении скольжения с большими скоростями и высоком давлении. При таких условиях в поверхностных слоях трущихся деталей быстро повышается температура, происходят схватывание и отрыв частиц металла с меньшей прочностью.

3. Молекулярное схватывание происходит при трении скольжения с малыми скоростями или при давлении, превышающем предел текучести. Такие условия возникают в опорах кузовов и деталях межтележечного сочленения, хвостовиков автосцепного устройства.

4. Осповидный износ возникает при трении качения и напряжениях, превышающих предел текучести металла и вызывающих усталостные повреждения. Такой износ характерен, например, для поверхностей роликов и колец подшипников.

5. Окислительный износ появляется в результате разрушения окислов металла на поверхностях двух взаимно перемещающихся деталей, особенно в условиях переменных нагрузок.

С увеличением продолжительности работы деталей их износ возрастает непрерывно, но с различной интенсивностью (рис. 1.1). В зоне I происходит приработка поверхностей, и износ растет быстро. После приработки рост износа замедляется (зона II - нормальной экс-плуатации). В конце зоны II наступает предельный износ, который при дальнейшей эксплуатации резко возрастает (зона III), что недопустимо. В целях продления срока службы деталей следует максимально облегчать условия их работы в период приработки, применяя качественную смазку и часто ее заменяя.

Рис. 1.1. Зависимость механического износа деталей от продолжительности их работы

Термический износ возникает в результате превышения допустимой для данной детали температуры. При этом снижается механическая прочность токоведущих элементов, отжигается медь, выплавляется олово, обгорает изоляция проводов. Повышение температуры сверх допустимых значений вредно сказывается на диэлектрических свойствах изоляции. Снижение диэлектрических свойств изоляции (ее старение) объясняется изменением молекулярной структуры изоляционного материала в результате часто повторяющихся или длительных воздействий на него высоких температур. Снижение механической прочности токоведущих частей обусловлено тем, что повышение температуры в контактных соединениях ускоряет процесс окисления их рабочих поверхностей. Переходное сопротивление в местах контакта при этом повышается, возрастает проходящий через контакт ток, что, в свою очередь, приводит к более интенсивному возрастанию температуры и, как следствие, к еще большей активности процесса окисления. Кроме того, повышенные температуры могут вызвать появление сколов, трещин и обгорание глазури на поверхностях из керамических материалов.


Электроэрозионный износ обусловлен уносом металла с рабочей поверхности электрической дугой, возникающей в момент разрыва находящихся под током контактов. Мощность и продолжительность этой дуги зависят в первую очередь от значений разрываемого тока, разности потенциалов между контактами в начале и в конце процесса, типа и состояния дугогасительных устройств. Этому виду износа подвержены коллекторы электрических машин, контактные провода и полозы токоприемников, контакты ряда аппаратов защиты силовых цепей и др.

Коррозионный износ возникает в результате коррозии металлических (в основном стальных) деталей. Этот процесс ускоряется с увеличением влажности и агрессивности внешней среды. У таких металлов как медь и алюминий образующаяся пленка окислов хотя непосредственно не вызывает износа, но приводит к снижению электрической проводимости, что активизирует окислительный процесс и развитие электроэрозии.

Методы снижения износов. Износ деталей и узлов может быть снижен конструкторскими, технологическими и эксплуатационными методами.

Конструкторские методы снижения износов имеют два основных направления. Первое из них - замена быстроизнашивающихся узлов или деталей узлами или деталями иной конструкции, обеспечивающей их работу с меньшим износом, например, внедрение новых опор кузова или буксовых поводков с резиновыми шарнирными узлами, не требующими смазки, замена подшипников скольжения в буксах колесных пар на подшипники качения, внедрение резинокордовых муфт тягового привода электропоездов, применение в силовых аппаратах двух пар контактов или шунтирование их высокоомным резистором для снижения плотности тока и т.д. Второе направление характеризуется применением материалов, снижающих механические усилия, например, резиновых прокладок, прокладок и втулок из полимерных материалов. Снизить износ можно также повышением прочности деталей путем дополнительной обработки их поверхностей (накатка, закаливание и др.), применением износостойких материалов (например, марганцовистой стали, коллекторной меди с присадками кадмия и серебра), покрытием металлов полимерными пленками, а изоляционных материалов - термореактивными пленками.

Технологические методы снижения износа сводятся к повышению точности обработки поверхностей деталей, применению накатки поверхностей роликами, наклепа дробью, цементации, нитроцементации и др., внедрению более жестких норм допусков на основные размеры и на отклонения характеристик машин и аппаратов от паспортных данных, совершенствованию системы контроля за состоянием деталей и узлов.

Эксплуатационные методы , как и конструкторские, имеют два направления. Первое - обеспечение рациональных режимов вождения поездов, снижающих вероятность возникновения повышенных износов. При ведении поезда следует избегать резких изменений тяговых и тормозных усилий, не допускать боксования, резких бросков тока или длительного протекания тока, близкого к предельному.

Второе направление - улучшение качества смазочных материалов, правильное их применение и хранение. Смазку следует наносить предварительно очищенными от грязи и протертыми лопаточками, масленками, гидропультами, нагнетателями, протирку выполнять концами, смоченными керосином. Смазываемые поверхности должны быть очищены от грязи, старой краски и ржавчины. Смешивать смазки и масла разных сортов запрещается. Хранить смазочные материалы надо в закрытых сосудах.

Повреждения деталей . В отличие от износа - явления неизбежного, но контролируемого и предсказуемого - повреждение является непредсказуемым, но его можно избежать.

Механические повреждения могут возникать в результате отклонений от установленной технологии изготовления и обработки деталей, неправильного монтажа, слабого их закрепления. Причинами повреждений могут быть наличие на деталях задиров и рисок, попадание в узлы посторонних предметов, скрытые раковины в материале деталей, местные перенапряжения в них.

Повреждения в электрических цепях возникают чаще всего от токовых перегрузок. Они вызывают пересыхание изоляции и чрезмерный нагрев мест со единения, загрязнение или увлажнение поверхности изоляции, нарушение надежности контактного соединения, перенапряжения в отдельных точках электрической цепи и нарушение прочности проводов, кабелей, их наконечников и изоляторов.

Возникновение повреждений предупреждают проведением планово-предупредительного технического обслуживания и ремонта в соответствующие сроки, совершенствованием методов ремонта и эксплуатации ТПС, улучшением конструкций деталей и узлов.

При функционировании производственных механизмов происходят процессы, относящиеся к постепенному снижению их рабочих свойств и изменению характеристик узлов и деталей. Дело в том, что спустя некоторый период времени они могут привести к серьезной поломке или полной остановке оборудования. Во избежание негативных последствий экономического характера, предприятия, как правило, организуют процесс грамотного управления износом и видами износа в отдельности, а также своевременно обновляют свои основные фонды.

Понятие износа

Сегодня под износом (старением) принято понимать постепенное снижение эксплуатационных свойств узлов, изделий и производственных механизмов в результате изменения их размеров, форм или физико-химических особенностей. Следует отметить, что износ и виды износа, существующие на сегодняшний день, появляются и накапливаются в процессе эксплуатации. Существует целый ряд факторов, которые определяют скорость старения оборудования. Так, негативным образом, как правило, сказываются следующие моменты:

  • Трение.
  • Температурный режим (экстремальный – в особенности).
  • Периодические, импульсные или статические нагрузки механического воздействия и так далее.

Следует отметить, что практически все виды износа оборудования можно замедлить. Для этого целесообразно полагаться на следующие факторы:

  • Конструктивные решения.
  • Соблюдение правил эксплуатации.
  • Использование качественных и современных смазочных материалов.
  • Своевременные планово-предупредительные ремонты, техническое обслуживание.

Вследствие всех видов износа основных фондов, снижения эксплуатационных качеств уменьшается и потребительская стоимость оборудования или производственных механизмов. Важно дополнить, что степень и скорость изнашивания определяются посредством условий трения, нагрузок, характеристик материалов. Помимо этого, немаловажную роль играют конструктивные особенности оборудования.

Виды износа


Классификация износа на сегодняшний день отличается достаточной обширностью. Так, для полного понимая целесообразно изначально рассмотреть информацию кратко, после чего углубиться в детали. Категория старения подразделяется на фактический износ, который сопровождается изменением характеристик объекта; функциональный износ, который вызывается вследствие развития новых технологий; внешний износ, обусловленный воздействием факторов внешнего типа. Первые два вида износа основных фондов классифицируются на устранимые и неустранимые. Кроме того, первая группа подразделяется в соответствии с причинами, вызвавшими старение оборудования, на износ первого рода (накапливается в результате эксплуатации в нормальных темпах) и износ второго рода (накапливается по причине аварий, стихийных бедствий и других факторов негативного характера). Если судить относительно времени протекания, то в этой же группе принято выделять непрерывный (технико-экономические показатели снижаются постепенно) и аварийный (мгновенный по времени осуществления, например, в результате пробоя кабеля или аварии на производстве) износ.

Вторая группа, то есть такой вид износа основных средств, как функциональный, классифицируется на моральный (основной причиной в данном случае выступает изменение характеристик изделий, аналогичных данному, а также удешевление их производства) и технологический (ключевой причиной служит изменение цикла, в который по традиции входит данный объект, в технологическом плане) износ. В свою очередь, моральное старение, исходя из затратных статей, изменения в структуре которых привели к износу, подразделяется на старение, обусловленное избыточными затратами капитала; устаревание по причине предельно больших затрат в эксплуатации; старение, обусловленное низким уровнем эргономичности и экологии.

Важно отметить, что внешний износ бывает только неустранимым. Итак, далее перейдем к разбору определенных видов износа оборудования, которым следует уделить пристальное внимание.

По характеру внешних воздействий


В зависимости от особенностей внешних воздействий на материалы оборудования принято выделять следующие разновидности старения:

  • Абразивный вид износа объектов. Речь идет о повреждении поверхности механизмов или изделий мелкими частицами материалов иного оборудования. Особенно характерна данная разновидность в условиях повышенной запыленности производственных механизмов. Например, при работе в горах, на стройке, при производстве материалов или выполнении сельскохозяйственных операций.
  • Кавитационный, который вызывается взрывным схлопыванием пузырьков с газом в жидкой среде.
  • Адгезионный вид физического износа.
  • Окислительное старение. Происходит оно, как правило, в результате химических реакций.
  • Тепловой износ.
  • Вид износа усталостный. Обычно он возникает при изменении структуры материала.

Типы износа и амортизация

Мы разобрались, какие виды износа известны в настоящее время. Стоит отметить, что классификация разновидностей старения в соответствии с вызывающими его физическими явлениями в микромире в любом случае дополняется систематизацией, связанной с макроскопическими последствиями для экономической жизни. Так, в финансовой аналитике и бухгалтерском учете понятие износа, которое отражает физический аспект явлений, тесным образом связано с экономическим термином амортизации оборудования. Под амортизацией следует понимать как снижение себестоимости производственных механизмов по мере их старения, так и отнесение части данного снижения на стоимость выпускаемого продукта. Основной целью здесь выступает аккумулирование средств на специальных амортизационных счетах для закупки нового оборудования производственного значения или частичного усовершенствования старого.

Физический износ


Виды износа в зависимости от причин и последствий подразделяются на экономический, функциональный и физический. В случае последнего речь идет о непосредственной утрате проектных характеристик и свойств единицы оборудования в процессе ее эксплуатации. Стоит отметить, что такая утрата может быть частичной или полной. В первом случае производственные механизмы подлежат восстановлению, ремонту, который возвращает первоначальные особенности изделий. При полном износе в оценке оборудования оно подлежит списанию. Помимо степенной классификации, физический износ имеет родовую:

  • Первый род: производственные механизмы изнашиваются в процессе планового применения с соблюдением всех нормативов и правил, которые установлены изготовителем.
  • Второй род: изменение характеристик оборудования по причине неправильной эксплуатации либо воздействия факторов непреодолимой силы.
  • Аварийный износ: скрытое изменение особенностей объекта приводит к аварийному выходу его из строя, который случается внезапно. В связи с чем может произойти катастрофа на предприятии, к примеру.

Необходимо дополнить, что перечисленные виды применимы не только к оборудованию в целом, но и к отдельным его составляющим (узлам, деталям).

Функциональный износ


Важно знать, что функциональное старение служит отражением процесса морального износа основных фондов. Речь идет о появлении на рынке однотипного, однако более экономичного, производительного и безопасного в использовании оборудования. Производственный станок в физическом плане может быть вполне исправным. Он выпускает продукцию, тем не менее использование новых технологий или современных моделей, которые периодически появляются на рынке, делает применение устаревших объектов невыгодным в экономическом ключе. Необходимо иметь в виду, что функциональный износ имеет свою классификацию:

  • Частичное старение: станок является невыгодным для законченного производственного цикла, однако вполне пригодным для реализации ограниченного числа операций.
  • Полное старение: любое применение станка приводит к причинению убытков. В таком случае единица оборудования подлежит демонтажу и списанию.

Известна также классификация в соответствии с вызвавшими функциональный износ факторами:

  • Моральный износ (сегодня выделяют три вида морального износа в зависимости от вызвавших его причин, рассмотренных в предыдущих главах) предполагает доступность идентичных, однако более совершенных, современных в технологическом плане моделей.
  • Технологический износ подразумевает разработку принципиально других технологий для выпуска аналогичного продукта. Важно дополнить, что данная разновидность износа так или иначе приводит к необходимости изменения всей технологической цепочки при условии полного или частичного обновления состава основных средств.

Стоит отметить, что по причине возникновения новой технологии состав оборудования, как правило, сокращается, а трудоемкость падает.

Экономический износ

Помимо временных, физических и природных факторов, на сохранение изначальных свойств оборудования опосредованным образом влияют следующие факторы экономического характера:

  • Падение спроса на выпускаемую товарную продукцию.
  • Процессы инфляции. Цены на трудовые ресурсы, сырье и комплектующие оборудования, используемого в производственных целях, растут, однако пропорционального роста цен на конечный продукт не происходит.
  • Ценовое давление со стороны конкурентов.
  • Колебания цен на сырьевом рынке, не связанные с инфляцией.
  • Рост стоимости услуг кредитного характера, которые используются для операционной работы или в целях обновления основных фондов.
  • Ограничения со стороны законодательства, относящиеся к применению оборудования, которое не отвечает стандартам в плане охраны окружающей среды.

Причины износа

Следует понимать, что виды и причины износа деталей связаны между собой. Далее рассмотрим основные причины, а также способы определения износа оборудования, производственных механизмов и изделий. Необходимо заметить, что для выявления причин и степени старения на каждом предприятии формируется и работает комиссия по фондам основных средств. Сегодня износ производственных механизмов определяется одной из следующих методик:

  • Посредством наблюдения, в которое входит визуальный осмотр, а также комплекс испытаний и измерений.
  • По периоду эксплуатации. Стоит учитывать, что он рассчитывается как отношение срока использования по факту к нормативному. Значение данного отношения и является величиной износа в процентах.
  • Через укрупненную оценку состояния производственного объекта, которая осуществляется с помощью специальных шкал и метрик.
  • Посредством прямого измерения в денежном варианте. В данном случае сопоставляется стоимость новой аналогичной единицы ОС и расходы на ремонт, связанный с восстановлением старой.
  • С помощью доходности дальнейшего применения. Речь идет об оценке снижения дохода, учитывая при этом актуальные издержки, связанные с восстановлением характеристик, по сравнению с доходом в теории.

Необходимо дополнить, что окончательный выбор, относящийся к определенной методике, делает комиссия по средствам основного фонда. При этом она руководствуется нормативной документацией, а также доступностью исходных сведений.

Способы учета износа оборудования


Далее целесообразно перейти к заключительному аспекту столь широкой темы, как износ производственных механизмов, оборудования, изделий и отдельных их составляющих. Амортизационные отчисления, которые призваны стать компенсацией процессов старения оборудования, в настоящее время можно также определить посредством целого ряда методик:

  • Пропорциональный или линейный расчет.
  • Метод уменьшаемого остатка.
  • Расчет, произведенный в соответствии со сроком производственного использования.
  • Расчет, осуществленный согласно объему выпущенного продукта.

Важно знать, что выбор конкретной методики реализуется при формировании или глубокой реорганизации структуры. Он обязательным образом закрепляется в учетной политике предприятия. Эксплуатация производственных механизмов, оборудования и разносортных изделий в соответствии с общепринятыми правилами и нормативными документами, а также достаточные и своевременные отчисления в амортизационные фонды, так или иначе, позволяют организациям сохранить экономическую и технологическую эффективность на конкурентоспособном уровне. В итоге структуры могут непрерывно приносить радость своим потребителям качественной товарной продукцией по разумным ценам.

Заключение


Итак, мы рассмотрели достаточно широкую в плане классификации категорию издержек, ее содержание и основные особенности. Помимо этого, разобрали причины износа и способы его оценки, а также учета. Как оказалось, учетных методик достаточно много, и все они принципиальным образом отличаются, имеют свои преимущества и недостатки. В заключение стоит добавить, что сегодня на территории Российской Федерации развитие реальной области экономики становится одной из самых важных задач. Тем не менее решать ее приходится в непростое время. Износ промышленного оборудования сегодня достигает 78 %, а заемные средства обходятся крайне дорого. Именно поэтому соответствующие государственные структуры усиленно работают над выработкой ресурсов, которые способны помочь восстановлению и дальнейшей модернизации промышленной отрасли в стране.

1. Сущность явления износа

Срок службы промышленного оборудования определяется изно­сом его деталей - изменением размеров, формы, массы или состоя­ния их поверхностей вследствие изнашивания, т. е. остаточной де­формации от постоянно действующих нагрузок либо из-за разруше­ния поверхностного слоя при трении.

Величина износа характеризуется установленными единицами длины, объема, массы и др. Определяется износ по изменению зазо­ров между сопрягаемыми поверхностями деталей, появлению течи в уплотнениях, уменьшению точности обработки изделия и др. Износы бывают нормальными и аварийными. Нормальным, или естественным, называют износ, который возникает при правильной, но длительной эксплуатации машины, т. е. в результате использования заданного ресурса ее работы.

Аварийным (или прогрессирующем) называют износ , наступающий в течение короткого времени и достигающий таких разме­ров, что дальнейшая эксплуатация машины становится невозмож­ной.

2. Виды и характер износа деталей.

Виды износа различают в соответствии с существующими видами изнашиваниями:

Механический;

Абразивный;

Усталостный;

Коррозионный и др.

Механический износ является результатом действия сил трения при скольжении одной детали по другой. При этом виде износа происходит истирание (срезание) поверхностного слоя металла и искажение геометрических размеров у совместно работающих дета­лей. Износ этого вида чаще всего возникает при работе таких рас­пространенных сопряжений деталей, как вал - подшипник, стани­на - стол, поршень - цилиндр и др.

Степень и характер механического износа деталей зависят от многих факторов:

Физико-механических свойств верхних слоев металла;

Условия работы и характера взаимодействия сопрягаемых поверхностей;

Давление;

Относительной скорости перемещения;

Условий смазывания; степени шероховатости и др.

Наиболее разрушительное действие на детали ока­зывает абразивное изнашивание, которое наблюда­ется в тех случаях, когда трущиеся поверхности загрязняются мел­кими абразивными и металлическими частицами. Обычно такие час­тицы попадают на трущиеся поверхности при обработке на станке литых заготовок.



Механический износ может вызываться и плохим обслуживанием оборудования, например нарушениями в подаче смазки, недоброка­чественным ремонтом и несоблюдением его сроков, мощностной пере­грузкой и т. д.

Усталостный износ является результатом действия на деталь переменных нагрузок, вызывающих усталость материала детали и его разрушение. Валы, пружины и другие дета­ли разрушаются вследствие усталости материала в поперечном се­чении. Для предотвращения усталостного разрушения важно пра­вильно выбрать форму поперечного сечения вновь изготовляемой или ремонтируемой детали: она не должна иметь резких переходов от одного размера к другому. Рабочая поверхность исключает наличие рисок и царапин, которые являются концентратами напряжения.

Коррозионный износ является результатом изнашивания деталей машин и установок, находящихся под непосредственным воздейст­вием воды, воздуха, химических веществ, колебаний температуры.

Под влиянием коррозии в деталях образуются глубокие разъеда­ния, поверхность становится губчатой, теряет механическую проч­ность.

Обычно коррозионный износ сопровождается и механическим износом вследствие сопряжения одной детали с другой. В этом слу­чае происходит так называемый коррозионно-механический, т.е. комплексный износ.

Износ при заедании возникает в результате прилипания («схва­тывания») одной поверхности к другой. Это явление наблюдается при недостаточной смазке, а также значительном давлении, при котором две сопрягаемые поверхности сближаются настолько плот­но, что между ними начинают действовать молекулярные силы, при­водящие к их схватыванию.

Характер механического износа деталей. Механический износ деталей оборудования может быть полным, если повреждена вся

поверхность детали, или местным, если поврежден какой-либо ее участок (рис.1).

В результате износа направляющих станков нарушаются их плоскостность, прямолинейность и параллельность вследствие дей­ствия на поверхности скольжения неодинаковых нагрузок. Напри­мер, прямолинейные направляющие 2 станка (рис. 1, а) под влия­нием больших местных нагрузок приобретают вогнутость в средней части (местный износ), а сопрягаемые с ними короткие направляю­щие 1 стола становятся выпуклыми.

В подшипниках качения вследствие различных причин (рис. 2, а-г)

износу подвержены рабочие поверхности - на них появляют­ся оспинки, наблюдается шелушение поверхностей беговых дорожек и шариков. Под действием динамических нагрузок происходит их усталостное разрушение; под влиянием излишне плотных посадок подшипников на вал и в корпус шарики и ролики защемляются между кольцами, в результате чего возможны перекосы колец при мон­таже и другие нежелательные последствия.

Различные поверхности скольжения также подвержены характер­ным видам износа (рис. 3).

В процессе эксплуатации зубчатых пе­редач вследствие контактной усталости материала рабочих поверх­ностей зубьев и под действием касательных напряжений возникает выкрашивание рабочих поверхностей, приводящее к образованию ямок на поверхности трения (рис. 3, а).

Разрушение рабочих поверхностей зубьев вследствие интенсивного выкрашивания (рис. 3, б) часто называют отслаива­нием (происходит отделение от поверхности трения материала в форме чешуек).

На рис. 3, в показана поверхность, разрушенная коррозией. Поверхность чугунного порошкового кольца (рис. 3, г) повреж­дена вследствие эрозионного изнашивания, которое происходит при движении поршня в цилиндре относительно жидкости; находящиеся в жидкости пузырьки газа лопаются вблизи поверхности поршня, что создает местное повышение давления или температуры и вызы­вает износ деталей.

3. Признаки износа.

Об износе деталей машины или станка можно судить по характе­ру их работы. В машинах, имеющих коленчатые валы с шатунами (двигатели внутреннего сгорания и паровые, компрессоры, эксцент­риковые прессы, насосы и др.), появление износа определяют по глухому стуку в местах сопряжений деталей (он тем сильнее, чем больше износ).

Шум в зубчатых передачах - признак износа профиля зубьев. Глухие и резкие толчки ощущаются каждый раз, когда меняется направление вращения или прямолинейного движения в случаях износа деталей шпоночных и шлицевых соединений.

Следы дробления на обтачиваемом валике, установленном в ко­ническом отверстии шпинделя, свидетельствует об увеличении за­зора между шейками шпинделя и его подшипниками вследствие их износа. Если обрабатываемая на токарном станке заготовка получа­ется конической, значит изношены подшипники шпинделя (главным образом передний) и направляющие станины. Увеличение мертвого хода, укрепленных на винтах рукояток сверх допустимо­го - свидетельство износа резьбы винтов и гаек.

Об износе деталей машин часто судят по появившимся на них царапинам, бороздкам и забоинам, а также по изменению их формы. В некоторых случаях проверку осуществляют с помощью молотка: дребезжащий звук при обстукивании детали молотком свидетельствует о наличии в ней значитель­ных трещин.

О работе сборочных единиц с подшипниками качения можно судить по характеру издаваемого ими шума. Лучше всего выполнять такую проверку специальным прибором - стетоскопом .

Работу подшипника можно проверять и по нагреву, определяе­мому на ощупь наружной стороной кисти руки, которая безболез­ненно выдерживает температуру до 60 °С.

Тугое проворачивание вала свидетельствует об отсутствии соос­ности между ним и подшипником или о чрезмерно тугой посадке подшипника на валу или в корпусе и т.д.

4. Способы обнаружения дефектов и восстановления деталей.

Большинство крупных и средних механических дефектов обнаруживают при внешнем осмотре. Для обнаружения мелких трещин можно использовать различные методы дефектоскопии. Наиболее простые капиллярные методы. Если, например, опустить деталь на 15-30 мин в керосин, то при наличии трещин жидкость проникает в них. После тщательной протирки, поверхности детали покрывают тонким слоем мела; мел поглощает керосин из трещин, в результате чего на поверхности появляются темные полосы, указывающие местонахождение дефекта.

Для более точного обнаружения трещин применяют жидкости, которые светятся при облучении ультрафиолетовыми лучами (капиллярный люминесцентный метод). Такой жидкостью является, например, смесь из 5 частей керосина, 2,5 частей трансформаторного масла и 2,5 частей бензина. Деталь погружают на 10-15 мин в жидкость, затем промывают и просушивают, после чего облучают ультрафиолетовыми лучами (ртутно-кварцевой лампой). В местах трещин появляется светло-зеленое свечение.

Трещины обнаруживают также методами магнитной дефектоскопии. Деталь намагничивают и смачивают магнитной суспензией (порошок окиси железа, размешанный в масле, керосине или водно!-мыльном растворе). В местах трещин образуются скопления порошка (рис. 4, а).

Продольные трещины обнаруживают при прохождении магнитных линий по окружности детали (рис. 4, б), а поперечные трещины - при продольном намагничивании (рис.4, в).

Дефекты, расположенные внутри материала, обнаруживают рентгеноскопическим методом. Рентгеновские лучи, проходя через проверяемую деталь, попадают на чувствительную пленку, на которой пустоты проявляются как более темные пятна, а плотные инородные включения - как более светлые пятна.

В настоящее время распространен ультразвуковой метод обнаружения трещин и других скрытых дефектов. К исследуемой детали прикладывают ультразвуковой зонд, основной частью которого является кристаллический генератор механических колебаний высокой частоты (0,5-10 МГц). Эти колебания, проходя через материал детали, отражаются от внутренних границ (внутренних трещин, поверхностей разрыва, раковин и т. д.) и попадают обратно в зонд. Прибор регистрирует время запаздывания отраженных волн относительно излученных. Чем больше это время, тем больше глубина, на которой расположен дефект.

Восстановление деталей и механизмов станков осуществляют следующими методами. Обработка резанием - метод ремонтных размеров - применяют для восстановления точности направляющих станков, изношенных отверстий или шеек различных деталей, резьбы ходовых винтов и др.

Ремонтным называют размер , до которого обрабатывают изношенную поверхность при восстановлении детали. Различают свободные и регламентированные размеры.

Сваркой исправляют детали с изломами, трещинами, сколами.

Наплавка является разновидностью сварки и заключается в том, что на изношенный участок наплавляют присадочный материал, более износостойкий, чем материал основной детали.

Широкое распространение получил способ восстановления деталей из чугуна методом сварка - пайка латунной проволокой и прутками из медно-цинковых оловянных сплавов. Этот способ не требует нагрева свариваемых кромок до расплавления, а лишь до температуры плавления припоя.

Металлизация заключается в расплавлении металла и распылении его струей сжатого воздуха на мелкие частицы, которые внедряются в неровности поверхности, сцепляясь с ними. Металлизацией может быть наращен слой от 0,03 до 10 мм и выше.

Металлизационные установки могут быть газовые (металл плавится в пламени газовой горелки) и дуговые (схема которого показана на рис.5).

Хромирование представляет собой процесс восстановления изношенной поверхности детали осаждением хрома электролитическим путем(рис.6), толщина хромирования до 0.1 мм.

Все многообразие методов ремонта наглядно представлено на рис.7.

5. Модернизация станков.

При капитальном ремонте желательно осуществлять модернизацию станков с учетом условий эксплуатации и последних достижений науки и техники.

Под модернизацией станков понимают внесение в конструкцию частичных изменений и усовершенствований в целях повышения их технического уровня до уровня современных моделей аналогичного назначения (общетехническая модернизация) или для решения конкретных технологических задач производства путем приспособления оборудования к более качественному выполнению определенного вида работ (технологическая модернизация). В результате модернизации повышается производительность оборудования, уменьшаются эксплуатационные расходы, снижается брак, а в ряде случаев увеличивается длительность межремонтного периода.

Представление об основных направлениях модернизации металлорежущих станков дает схема, приведенная на рисунке 8.

ЛЕКИЦЯ №6.

1.Техническая диагностика оборудования.

Техническое диагностирование (ТД) – элемент Системы ППР, позволяющий изучать и устанавливать признаки неисправности (работоспособности) оборудования, устанавливать методы и средства, при помощи которых дается заключение (ставится диагноз) о наличии (отсутствии) неисправностей (дефектов). Действуя на основе изучения динамики изменения показателей технического состояния оборудования, ТД решает вопросы прогнозирования (предвидения) остаточного ресурса и безотказной работы оборудования в течение определенного промежутка времени.

Техническая диагностика исходит из положения, что любое оборудование или его составная часть может быть в двух состояниях – исправном и неисправном. Исправное оборудование всегда работоспособно, оно отвечает всем требованиям ТУ, установленных заводом-изготовителем. Неисправное (дефектное) оборудование может быть как работоспособно, так и неработоспособно, т. е. в состоянии отказа. Отказы являются следствием износа или разрегулировки узлов.

Техническая диагностика направлена в основном на поиск и анализ внутренних причин отказа. Наружные причины определяются визуально, при помощи измерительного инструмента, несложных приспособлений.

Особенность ТД состоит в том, что она измеряет и определяет техническое состояние оборудования и его составных частей в процессе эксплуатации, направляет свои усилия на поиск дефектов. Зная техническое состояние отдельных частей оборудования на момент диагностирования и величину дефекта, при котором нарушается его работоспособность, можно предсказать срок безотказной работы оборудования до очередного планового ремонта, предусмотренного нормативами периодичности Системы ППР.

Заложенные в основу ППР нормативы периодичности являются опытно усредненными величинами. Но Любые усредненные величины имеют свой существенный недостаток: даже при наличии ряда уточняющих коэффициентов они не дают полной объективной оценки технического состояния оборудования и необходимости вывода в плановый ремонт. Почти всегда присутствуют два лишних варианта: остаточный ресурс оборудования далеко не исчерпан, остаточный ресурс не обеспечивает безаварийную работу до очередного планового ремонта. Оба варианта не обеспечивают требование Федерального закона № 57-ФЗ об установлении сроков полезного использования основных фондов путем объективной оценки потребности его постановки в ремонт или вывода из дальнейшей эксплуатации.

Объективным методом оценки потребности оборудования в ремонте является постоянный или периодический контроль технического состояния объекта с проведением ремонтов лишь в случае, когда износ деталей и узлов достиг предельной величины, не гарантирующей безопасной, безотказной и экономичной эксплуатации оборудования. Такой контроль может быть достигнут средствами ТД, а сам метод становится составной частью Системы ППР (контроля).

Другой задачей ТД является прогнозирование остаточного ресурса оборудования и установления срока его безотказной работы без ремонта (особенно капитального), т. е. корректировка структуры ремонтного цикла.

Техническое диагностирование успешно решает эти задачи при любой стратегии ремонта, особенно стратегии по техническому состоянию оборудования.

Основным принципом диагностирования является сравнение регламентированного значения параметра функционирования или параметра технического состояния оборудования с фактическим при помощи средств диагностики. Под параметром здесь и далее согласно ГОСТ 19919-74 понимается характеристика оборудования, отображающая физическую величину его функционирования или технического состояния.

Целями ТД являются:

Контроль параметров функционирования, т. е. хода технологического процесса, с целью его оптимизации;

Контроль изменяющихся в процессе эксплуатации параметров технического состояния оборудования, сравнение их фактических значений с предельными значениями и определение необходимости проведения ТО и ремонта;

Прогнозирование ресурса (срока службы) оборудования, агрегатов и узлов с целью их замены или вывода в ремонт.

2. Требования к оборудованию, переводимому на техническое диагностирование.

В соответствии с ГОСТ 26656-85 и ГОСТ 2.103-68 при переводе оборудования на стратегию ремонта по техническому состоянию в первую очередь решается вопрос о его приспособленности для установки на нем средств ТД.

О приспособленности находящегося в эксплуатации оборудования к ТД судят по соблюдению показателей надежности и наличию мест для установки диагностической аппаратуры (датчиков, приборов, монтажных схем).

Далее определяют перечень оборудования, подлежащего ТД, по степени его влияния на мощностные (производственные) показатели производства по выпуску продукции, а также на основе результатов выявления «узких мест» по надежности в технологических процессах. К этому оборудованию, как правило, предъявляются повышенные требования надежности.

В соответствии с ГОСТ 27518-87 конструкция оборудования должна быть приспособлена для ТД.

Для обеспечения приспособленности оборудования к ТД его конструкция должна предусматривать:

Возможность доступа к контрольным точкам путем вскрытия технологических крышек и люков;

Наличие установочных баз (площадок) для установки виброметров;

Возможность подключения и размещения в закрытых жидкостных системах средств ТД (манометров, расходометров, гидротесторов в жидкостных системах) и подключение их к контрольным точкам;

Возможность многократного присоединения и отсоединения средств ТД без повреждения устройств сопряжения и самого оборудования в результате нарушения герметичности, загрязнения, попадания посторонних предметов во внутренние полости и т. д.

Перечень работ по обеспечению приспособленности оборудования к ТД приводится в техническом задании на модернизацию переводимого на ТД оборудования.

После определения перечня оборудования, переводимого на ремонт по техническому состоянию, подготавливается исполнительная техническая документация по разработке и внедрению средств ТД и необходимой модернизации оборудования. Перечень и очередность разработки исполнительной документации приведены в табл. 1.

3. Выбор диагностических параметров и методов технического диагностирования.

Прежде всего, определяются параметры, подлежащие постоянному или периодическому контролю для проверки алгоритма функционирования и обеспечения оптимальных режимов работы (технического состояния) оборудования.

По всем агрегатам и узлам оборудования составляется перечень возможных отказов. Предварительно проводится сбор данных об отказах оборудования, оснащаемого средствами ТД, или его аналогов. Анализируется механизм возникновения и развития каждого отказа и намечаются диагностические параметры, контроль которых, плановое техническое обслуживание и текущий ремонт могут предотвратить отказ. Анализ отказов рекомендуется проводить по форме, представленной в табл. 2.

По всем отказам намечаются диагностические параметры, контроль которых поможет оперативно отыскать причину отказа, и метод ТД (см. табл.3).

Определяется номенклатура деталей, износ которых приводит к отказу.

На практике получили распространение диагностические признаки (параметры), которые можно разделить на три группы:

1) Параметры рабочих процессов

(динамика изменения давления, усилия, энергии), непосредственно характеризующие техническое состояние оборудования;

2) Параметры сопутствующих процессов или явлений

(тепловое поле, шумы, вибрации и др.), косвенно характеризующие техническое состояние;

3) Параметры структурные

(зазоры в сопряжениях, износ деталей и др.), непосредственно характеризующие состояние конструктивных элементов оборудования.

Исследуется возможность сокращения числа контролируемых параметров за счет применения обобщенных (комплексных) параметров.

Для удобства и наглядности методов и средств ТД разрабатываются функциональные схемы контроля параметров технологических процессов и технического состояния оборудования.

При выборе методов ТД учитывают следующие основные критерии оценки его качества:

Экономическая эффективность процесса ТД;

Достоверность ТД;

Наличие выпускаемых датчиков и приборов;

Универсальность методов и средств ТД.

По результатам анализа отказов оборудования разрабатываются мероприятия по повышению надежности оборудования, в том числе разработка средств ТД.

4. Средства технической диагностики.

По исполнению средства разделяются на:

- внешние - не являющиеся составной частью объекта диагностирования;

- встроенные - с системой измерительных преобразователей(датчиков) входных сигналов, выполненных в общей конструкции с оборудованием диагностирования как его составная часть.

Внешние средства ТД подразделяют на: стационарные , передвижные и переносные .

Если принято решение о диагностировании оборудования внешними средствами, то в нем должны быть предусмотрены контрольные точки, а в руководстве по эксплуатации средств ТД необходимо указать их расположение и описать технологию контроля.

Встраиваемые средства ТД контролируют параметры, выход значений которых за нормативные (предельные) значения влечет за собой аварийную ситуацию и зачастую не может быть предсказан заранее в периоды технического обслуживания.

По степени автоматизации процесса управления средства ТД подразделяют на автоматические, с ручным управлением (неавтоматические) и с автоматизированно-ручным управлением.

Возможности автоматизации диагностирования значительно расширяются при использовании современной компьютерной техники.

При создании средств ТД для технологического оборудования могут применяться различные преобразователи (датчики) неэлектрических величин в электрические сигналы, аналого-цифровые преобразователи аналоговых сигналов в эквивалентные значения цифрового кода, сенсорные подсистемы технического зрения.

К конструкциям и типам преобразователей, применяемых для средств ТД, рекомендуется предъявлять следующие требования:

Малогабаритность и простота конструкций;

Приспособленность для размещения в местах с ограниченным объемом размещения аппаратуры;

Возможность многократной установки и снятия датчиков при минимальной трудоемкости и без монтажа оборудования;

Соответствие метрологических характеристик датчиков информационным характеристикам диагностических параметров;

Высокая надежность и помехоустойчивость включая возможность эксплуатации в условиях электромагнитных помех, колебаний напряжения и частоты питания;

Устойчивость к механическим воздействиям(удары, вибрации) и к изменению параметров окружающей среды(температура, давление, влажность);

Простота регулирования и обслуживания.

Заключительным этапом создания и внедрения средств ТД является разработка документации.

Эксплуатационная конструкторская документация;

Технологическая документация;

Документация на организацию диагностирования.

Кроме эксплуатационной, технологической и организационной документации на каждый переводимый объект разрабатываются программы прогнозирования остаточного и прогнозируемого ресурса.

ЛЕКЦИЯ №7.

1. Принципы современного сервиса.

Существует ряд общепринятых норм, соблюдение которых предостерегает от ошибок:
· Обязательность предложения. В глобальном масштабе компании, производящие высококачественные товары, но плохо обеспечивающие их сопутствующими услугами, ставят себя в очень невыгодное положение.
· Необязательность использования. Фирма не должна навязывать клиенту сервис.
· Эластичность сервиса. Пакет сервисных мероприятий фирмы может быть достаточно широк: от минимально необходимых до максимально целесообразных.
· Удобство сервиса. Сервис должен представляться в том месте, в такое время и в такой форме, которые устраивают покупателя.

Техническая адекватность сервиса.

Современные предприятия все в большей мере оснащаются новейшей техникой, резко усложняющий собственно технологию изготовления изделий. И если технический уровень оборудования и технологии сервиса не будет адекватен производственному, то трудно рассчитывать на необходимые качества сервиса.
· Информационная отдача сервиса. Руководство фирмы должно прислушиваться к информации, которую может выдать служба сервиса относительно эксплуатации товаров, об оценках и мнениях клиентов, поведении и приемов сервиса конкурентов и т.д.
· Разумная ценовая политика. Сервис должен быть не столько источником дополнительной прибыли, сколько стимулом для приобретения товаров фирмы и инструментом укрепления доверия покупателей.
· Гарантированное соответствие производства сервису. Добросовестно относящийся к потребителю производитель будет строго и жестко соразмерять свои производственные мощности с возможностями сервиса и никогда не поставит клиента в условия «обслужи себя сам».

2. Основные задачи системы сервиса.

В общем случае основными задачами в сервисе являются:

Консультирование потенциальных покупателей перед приобретением изделий данного предприятия, позволяющее им сделать осознанный выбор.

Подготовка персонала покупателя или его самого к наиболее эффективной и безопасной эксплуатации приобретенной техники.

Передача необходимой технической документации.

Предпродажная подготовка изделия во избежание малейшей возможности отказа в его работе во время демонстрации потенциальному покупателю.

Доставка изделия к месту его эксплуатации таким образом, чтобы свести к минимуму вероятность его повреждения в пути.

Приведение техники в рабочее состояние на месте эксплуатации (установка, монтаж) и демонстрация его покупателю в действии.

Обеспечение полной готовности изделия к эксплуатации в течение всего срока нахождения его у потребителя.

Оперативная поставка запасных частей и содержание для этого необходимой сети складов, тесный контакт с изготовителем запасных частей.

Сбор и систематизация информации о том, как эксплуатируется техника потребителем (условия, продолжительность, квалификация персонала и т.д.) и какие высказываются при этом жалобы, замечания, предложения.

Участие в совершенствовании и модернизации потребляемых изделий на основе анализа полученной информации.

Сбор и систематизация информации о том, как ведут сервисную работу конкуренты, какие новшества они предлагают клиентам.

Формирование постоянной клиентуры рынка по принципу: «Вы покупаете наш товар и используете его, мы делаем все остальное»

Помощь службе маркетинга предприятия в анализе и оценке рынков, покупателей и товара.

3. Виды сервиса по времени его осуществления.

По временным параметрам сервис разделяется на предпродажный и послепродажный, а послепродажный в свою очередь – на гарантийный и послегарантийный.

1. Предпродажный сервис

Всегда бесплатен и предусматривает подготовку изделия для представлению потенциальному или реальному покупателю. Предпродажный сервис, в принципе, включает 6 основных элементов:

Проверка;

Консервация;

Укомплектовывание необходимой технической документации, инструкциями о пуске, эксплуатации, техническом обслуживании, элементарных ремонтов и др. информация(на соответствующем языке);

Расконсервация и проверка перед продажей;

Демонстрация;

Консервация и передача потребителю.

2. Послепродажный сервис

Послепродажный сервис делится на гарантийный и послегарантийный по чисто формальному признаку: «бесплатно» (в первом случае) или за плату (во втором) производятся предусмотренные сервисным перечнем работы. Формальность здесь заключается в том, что стоимость работ, запасных частей и материалов в гарантийный период входит в продажную цену или в иные (послегарантийные) услуги.

Сервис в гарантийный период охватывает принятые на гарантийный период виды ответственности, зависящие от продукции, заключенного договора и политики конкурентов. В принципе, он включает:

1) расконсрвацию при потребителе;

2) монтаж и пуск;

3) проверку и настройку;

4) обучение работников правильной эксплуатации;

5) обучение специалистов потребителя поддерживающему сервису;

6) наблюдение изделия(системы) эксплуатации;

7) осуществление предписанного технического обслуживания;

8) осуществление(при необходимости) ремонта;

9) поставку запасных частей.

Предложенный перечень услуг в основном относится к сложной дорогостоящей технике производственного назначения.

Сервис в послегарантийный период включает аналогичные услуги, наиболее распространенными из которых являются:

Наблюдение за изделием в эксплуатации;

Повторное обучение клиентов;

Разнообразная техническая помощь;

Обеспечение запасными частями;

Ремонт(при необходимости);

Модернизация изделия(по согласованию с заказчиком).

Существенное отличие послегарантийного сервиса состоит в том, что он осуществляется за плату, а его объем и цены определяются условиями контракта на данный вид сервиса, прейскурантами и иными подобными документами.

Таким образом, сервисная политика охватывает систему действий и решений, связанных с формированием у потребителя убеждения, что с покупкой конкретного изделия или комплекса он гарантирует себе надежные тылы и может концентрироваться на своих основных обязанностях.

Однако, следует подчеркнуть, что для формирования конкурентоспособной маркетинговой сервисной политики еще на этапе разработки продукта необходимо осуществить следующие действия:

а) изучение потребительского спроса по рынкам в той его части, которая связана с принятыми конкурентами формами, методами и условиями сервиса по аналогичным товарам;

б) систематизация, анализ и оценка собранной информации для выбора решения по организации сервиса; разработка вариантов решений с учетом особенностей продукта, рынка и целей организации;

в) сравнительный анализ вариантов;

г) участие специалистов по сервису в проектно-конструкторской деятельности для совершенствования изделия с учетом последующего технического обслуживания.

В случае наиболее полной реализации фирменный сервис включает в себя целый ряд элементов, отражающих жизненный цикл изделия с момента его изготовления до утилизации(рис.1).

4. Виды сервиса по содержанию работ.

Констатируя тенденции последнего времени, нужно отметить, что все большее значение играют не чисто технические работы, а разнообразные (в том числе, косвенные) интеллектуальные услуги. И совершенно неважно, в какой форме подаются эти услуги: особый набор рецептов для микроволновых печей или комплекс индивидуальных консультаций для данного фермера по вопросам обработки именно его участка.

По этой причине происходит деление сервиса по содержанию работ:

- жесткий сервис включает в себя все услуги, связанные с поддержанием работоспособности, безотказности и заданных параметров работы товара;

- мягкий сервис включает весь комплекс интеллектуальных услуг, связанных с индивидуализацией, т. е. с более эффективной эксплуатацией товара в конкретных условиях работы у данного потребителя, а также просто с расширением сферы полезности товара для него.

Грамотный производитель стремится сделать для покупателя максимум возможного в любой ситуации. Когда производитель обеспечивает фермеру квалифицированную оценку наиболее эффективных режимов обработки почвы на купленном тракторе - это прямой сервис. А если для поддержания хороших взаимоотношений с клиентом дилер приглашает жену фермера на бесплатные курсы «Домашний бухгалтер», организованные специально для жен клиентов фирмы, то здесь мы можем говорить о косвенном сервисе. Это, конечно, прямого отношения к покупке трактора не имеет, но клиенту это полезно и приятно. Таким образом, косвенный сервис хотя и сложными путями, но вносит свой вклад в успехи фирмы.

5. Основные подходы к осуществлению сервиса.

Исходя из сложившейся в развитых странах практики, рядом западных авторов предложена следующая классификация подходов к осуществлению сервиса:

1) Негативный подход.

При данном подходе производитель рассматривает проявившиеся дефекты изделия как случайно возникшие ошибки. Сервис рассматривается не как деятельность, добавляющая потребительскую стоимость продукта, а скорее, как излишние расходы, которые нужно поддерживать как можно меньшими.

2) Исследовательский подход.

В организационном отношении во многом похож на предыдущий. Но в отличие от него акцент делается на внимательный сбор и обработку информации о дефектах, используемой в дальнейшем для улучшения качества продукции. Этот подход больше опирается на выяснение причины возникновения дефекта, нежели на ремонт самого изделия.

3) Сервис как хозяйственная деятельность.

Сервис может быть серьезным источником прибыли организации, особенно, если продано большое количество изделий и систем, которые уже находятся в послегарантийном периоде. Любое совершенствование продукта в направлении увеличения надежности ограничивает доходы от сервиса; но, с другой стороны, создает предпосылки для успеха в конкурентной борьбе.

4) Сервис - обязанность поставщика.

В процессе эксплуатации авиационной техники самой распространенной причиной возникновения дефектов старения является износ, т.е. изменение размеров, формы и состояния поверхности деталей под действием различного рода нагрузок, сил трения и влияния окружающей среды.

В зависимости от абсолютного значения величины износа различают нормальный (естественный ), износ при котором повреждения, возникшие на деталях, не нарушают нормальной работы механизма. Зазоры в сочленениях при этом не выходят за допустимые пределы. Износ, при котором зазоры превышают допустимые пределы, появляются ударные нагрузки, называют дефектным. Наличие дефектного износа ухудшает работу соединения, вызывает нагрев деталей, заедания, задиры. Дефектный износ интенсивно прогрессирует и может привести к поломке деталей и, как следствие, отказу механизма.

На рис. 1.1 представлен процесс изменения зазоров в соединении. При разработке соединения определяется минимальный зазор И м, необходимый для компенсации температурных расширений и размещения смазки. Также устанавливается предельно допустимый зазор И 3 , при котором износ остается нормальным. Весь процесс износа можно разделить на три периода. Отрезок И м - 1 отражает процесс приработки поверхностей деталей, когда сглаживаются микронеровности. Этот период характеризуется достаточно интенсивным износом, особенно в самом начале процесса. По мере приработки износ стабилизируется, и наступает период нормального, установившегося износа, в течение которого зазор увеличивается медленно, с постоянной скоростью (отрезок 1-2). Период дефектного износа наступает, когда зазор достигнет предельного значения и начнет его превышать. Скорость износа при этом будет все быстрее возрастать.

Рис. 1.1. График зависимости величины износа И от времени работы V.

I - приработка; II - установившийся износ; III - дефектный износ; И м - 1 - период приработки; 1-2 - период установившегося износа; 2-3 - период дефектного износа до разрушения; И м - монтажный зазор; И 3 - предельно допустимый зазор; И п - зазор после приработки; а - угол наклона кривой, характеризующий

интенсивность износа

Для каждого механизма очень важно уловить момент перехода естественного износа в дефектный и прекратить эксплуатацию для замены или ремонта износившейся детали.

Различают три вида естественного износа: механический, коррозионный и усталостный.

Механический износ возникает в результате действия сил трения и ударных нагрузок в сопряженных деталях, имеющих взаимное перемещение. Выделяют следующие разновидности механического износа: абразивный, схватывание 1-го рода (атермическое), тепловой износ (схватывание 2-го рода), осповидный и окислительный.

Абразивный - самый распространенный вид износа, возникает от воздействия мелких твердых частиц, попадающих в зазоры между деталями со смазкой или другим путем. Эти частицы, подобно режущему инструменту, образуют на поверхности деталей риски и царапины, что ухудшает состояние поверхности и усугубляет износ. Разновидностью абразивного износа является газо-бразивный, при котором рабочие поверхности и передние кромки лопаток компрессора и лопасти воздушных винтов повреждаются частицами песка и пыли, попадающими вместе с воздухом.

Износ схватывания Нго рода возникает в малоподвижных сильно нагруженных соединениях. Скорость взаимного перемещения в таких соединениях не более 1 м/с, а удельное давление превышает предел текучести материала. При больших удельных давлениях происходит выдавливание масляной пленки из зазора между деталями, и в зонах непосредственного контакта начинают действовать силы молекулярного притяжения, под действием которых происходит схватывание поверхностных слоев деталей при относительно низкой температуре (отсюда второе название износа - атермическое схватывание). При этом с детали, имеющей меньшую поверхностную прочность, материал срывается сопряженной деталью и переносится на нее. В результате на деталях возникают выступы и раковины, поверхности становятся шероховатыми, что усиливает износ и в дальнейшем вызывает разрушение. Атермическое схватывание может происходить в относительно неподвижных соединениях, например в замках крепления лопаток компрессора газотурбинного двигателя.

Тепловой износ возникает при больших скоростях скольжения поверхностей деталей и повышенных удельных давлениях. При таких условиях происходит интенсивный рост температуры в поверхностных слоях материала детали вплоть до температуры плавления, что вызывает их разупрочнение, размазывание и унос частиц металла с поверхности трения. В результате возникает тепловое сваривание с заклиниванием деталей. Тепловому износу подвержены поршни и цилиндры поршневых двигателей, оси сателлитов в редукторах турбовинтовых двигателей.

Осповидный износ возникает в узлах, работающих при трении качения (поверхности зубчатых колес, тела качения в подшипниках), поверхность контакта у которых мала и подвержена высоким контактным напряжениям. При трении качения всегда присутствует явление проскальзывания, поскольку тела качения в узлах трения имеют различный радиус, что и приводит к формированию многократных повторных микродеформаций в сжатом объеме и возникновению остаточных напряжений. Проскальзывание может усугубляться неточностью изготовления пар трения и перекосами в зацеплениях. Такого рода изнашивание имеет усталостный характер и со временем приводит к возникновению трещин, развивающихся вглубь детали под небольшим углом к поверхности в направлении качения. Затем трещина вновь выходит на поверхность, образуя оспинки и раковины. При этом происходит отделение частиц материала детали (питтинг) размером 0,2-0,3 мм.

Окислительный износ возникает на деталях, работающих при трении скольжения и качения, в среде, насыщенной кислородом, и представляет собой процесс образования и разрушения на поверхностях трения тончайших пленок окислов. Этот вид износа характерен для узлов, работающих при сухом контакте или граничной смазке. В таких условиях поверхностная окисная пленка становится очень хрупкой, растрескивается и отслаивается, образуя абразивный материал, усиливающий износ.

Коррозионный (химический) износ - результат химического и электрохимического взаимодействия металлических деталей с окружающей средой. В зависимости от условий возникновения коррозии различают атмосферную, контактную, газовую коррозию, коррозию от воздействия агрессивных веществ и биологическую.

Атмосферная коррозия возникает при взаимодействии незащищенных деталей с атмосферной влагой. Процесс окисления в этом случае химический, а чаще более интенсивный электрохимический, так как атмосферная влага с растворенными в ней солями различных металлов и газами представляет собой электролит. Атмосферная коррозия более интенсивно развивается на загрязненных деталях и в атмосфере, сильно загрязненной промышленными отходами. От атмосферной коррозии страдают в первую очередь контровочные и крепежные детали, нижняя часть поверхности крыла и фюзеляжа, детали шасси и подпольная часть воздушного судна.

Различают контактную коррозию в сырых и сухих стыках деталей. При попадании влаги (электролита) в зазор между деталями из разнородных материалов возникает гальванический процесс, при котором разрушается деталь с более высоким электрическим потенциалом. Чем больше разность потенциалов деталей, тем интенсивней протекает процесс. На воздушных судах таким видом коррозии поражаются дюралюминиевые и магниевые детали, соединенные стальными болтами или соприкасающиеся со стальными деталями.

Коррозия, возникающая в сухих стыках деталей, совершающих элементарные перемещения относительно друг друга (вибрации), получила название фреттинг-коррозии. Она встречается в болтовых и заклепочных соединениях, в шлицевых соединениях, в стыках элементов конструкции, в узлах, собранных с прессовой посадкой. Природа возникновения фреттинг-коррозии достаточно сложна. Основной причиной разрушения поверхности материала в этих условиях являются усталостные и коррозионные процессы. Кроме того, возникают благоприятные условия для электрохимических процессов, которые также участвуют в разрушении контактирующих деталей. При этом на контактирующей поверхности обнаруживаются следы усталостного, абразивного и окислительного износа. Фреттинг-коррозия снижает усталостную долговечность материала в 1,5-2,5 раза, которая возрастает на порядок в условиях действия циклических нагрузок.

Газовая коррозия возникает на деталях под действием отработавших газов, образующихся в процессе сгорания топлива, в состав которых входят различные агрессивные химические соединения. Особо агрессивными из них являются соединения молибдена и серы, которые вызывают язвенную коррозию жаропрочных сплавов, проникающую на большую глубину. Для тонкостенных деталей, таких как выхлопные трубы, реактивные сопла, жаровые трубы, сопловые и рабочие лопатки турбин, это является опасным явлением, приводящим к их разрушению.

Коррозия от воздействия агрессивных веществ на воздушных судах может наблюдаться в зонах размещения бортовых аккумуляторных батарей, буфета-кухни, санузлов. Например, интенсивную коррозию вызывают растворы солей и кислот. Для дюралюминиевых сплавов особенно опасны щелочные растворы.

Биологическая коррозия - результат деятельности микроорганизмов, способных ускорять электрохимическую коррозию алюминиевых сплавов. Такой вид коррозионных повреждений наблюдается в первую очередь на воздушных судах с большими сроками службы, в зонах с ограниченным доступом при техническом обслуживании в процессе эксплуатации.

Усталостный износ возникает на деталях, работающих в условиях знакопеременных и вибрационных нагрузок в зонах концентрации напряжений. Такими зонами являются отверстия, пазы, галтели, переходы, резьбовые поверхности, шлицы, а также места расположения механических повреждений и коррозии. В точках материала, где внутренние напряжения складываются с напряжениями от повторных внешних нагрузок, возникает нарушение связей между кристаллами, и появляются микротрещины, которые постепенно увеличиваются и ослабляют сечение. Трещины возникают, как правило, на поверхности детали независимо от того, было ли связано нагружение с поверхностными напряжениями. В дальнейшем сечение настолько ослабляется, что не может выдержать нормальных нагрузок, и происходит разрушение. Усталостному износу подвержены все детали, которые работают в зонах вибрации и при трении качения, например детали воздушных судов и авиадвигателей.

Износом называется постепенное поверхностное разрушение материала детали, сопровождающееся отделением от него частиц, переносом частиц на сопряженную поверхность детали, а также изменением качества поверхности – ее геометрии и свойств и поверхностных слоев материала.

В практике встречается нормальный и катастрофический износ. Нормальный износ может быть заранее оценен и учтен при планировании ремонтных работ, а катастрофический износ выводит машину из строя внезапно.

Уменьшение величины нормального износа и вероятности катастрофического дает увеличение общего срока службы машины, а также снижает стоимость и продолжительность ее ремонтов.

Износ происходит вследствие механического, теплового, химического и электрического воздействия на материал соприкасающегося с материалом трущегося тела, воздействия свободных твердых частиц другого материала или окружающей среды.

Износ, так же как и трение, связан со сложными, недостаточно изученными явлениями в поверхностных слоях материала.

Истирание наблюдается при относительном движении прижатых друг к другу поверхностей. На истирание расходуется часть энергии трения.

Процесс истирания объясняется следующими явлениями:

  • а) выступающие неровности соприкасающихся деталей при движении задевают друг за друга и механически отрывают частицы металла с поверхностей;
  • б) поверхности приходят на отдельных участках в молекулярное соприкосновение, как бы привариваясь друг к другу; при дальнейшем относительном движении происходит разрушение мест приварки, сопровождающееся отрывом приставших частиц с сопряженных поверхностей;
  • в) аморфные слои приработанных поверхностей в отдельных точках сильно нагреваются и размягчаются; при относительном движении поверхностей размягченные частицы переносятся со своих мест на значительные расстояния, по пути застывают и оказываются отделенными. При истирании может имеет место сочетание перечисленных явлений.

Абразивный износ наблюдается при попадании на трущиеся поверхности мелких частиц высокой твердости (абразива шлифовального круга, окалины, песка и т.д).

При жидкостном трении свободные частицы, имеющие размеры меньше толщины масляного слоя, оказывают сравнительно слабое влияние на износ поверхностей.

При нежидкостном трении, а также когда размер частиц превышает толщину масляного слоя, наблюдается интенсивный износ поверхностей. Следы износа имеют вид мелких продольных канавок.

Когда одна трущаяся поверхность имеет малую твердость, абразивному износу подвергается главным образом другая поверхность. Это объясняется более прочным удерживанием частиц абразива на менее твердой поверхности за счет того, что частицы под внешним давлением углубляются в менее твердую поверхность и удерживаются в ней, и, следовательно, происходит меньше движения частиц абразива относительно мягкой поверхности, чем относительно твердой.

Задиры на поверхности проявляются в быстром образовании продольных канавок значительной глубины (до 1 мм и больше). Явление задиров для большинства машин относится к категории катастрофического износа. Процесс образования задиров объясняется сцеплением трущихся поверхностей в отдельных местах, вырыванием значительного количества металла с одной поверхности и появлением нароста на другой. При дальнейшем относительном движении поверхности нарост вызывает появление задира и дальнейшего прогрессивного разрушения поверхности.

Большая опасность задира получается при поверхностях из одинаковых металлов. Попадание абразивных частиц может послужить самостоятельной причиной задира (при достаточно крупных частицах) или способствовать началу описанного выше процесса вследствие повышения удельного давления в точке, расположенной впереди зерна абразива, где происходит выпучивание металла.

Усталостное выкрашивание заключается в отслаивании частиц металла с трущихся поверхностей вследствие явления усталости при периодически изменяющихся нагрузках. Явление усталостного износа обычно наблюдается в высших кинематических парах, главным образом при обильной смазке. Последнее объясняется внедрением жидкости в микротрещины на поверхности, что способствует разрушению последней. Смятие , постепенно возрастающее, наблюдается при недопустимо больших удельных давлениях или при плохо подогнанных, выставленных и обработанных, не прошедших предварительной приработки поверхностях.

Коррозионный износ является следствием химического или электрического воздействия среды; на интенсивность коррозии оказывает большое влияние нагрев поверхности детали, ускоряющий процесс износа.

Факторы, влияющие на износ трущихся поверхностей:

  • а) материалы трущихся поверхностей и их термообработка;
  • б) качество поверхностей трения;
  • в) степень загрязнения мест трения;
  • г) характер и род смазки;
  • д) величина удельного давления;
  • е) величина удельной работы трения;
  • ж) скорость.

Обычно износ металлов получается тем меньше, чем выше их твердость. Поэтому для повышения износостойкости рекомендуется применять для поверхностей стальных и чугунных деталей термическую обработку, насыщение поверхностных слоев соответствующими веществами (цементация, азотизация), а также поверхностные покрытия износостойким материалом (например, хромом, твердым сплавом).

При необходимости для термообработки отдельных участков крупных стальных и чугунных деталей производится по-

верхностный нагрев нужных мест токами высокой частоты или газовым пламенем, а покрытие твердым сплавом производится методом электроэрозионной обработки.

2. Способы выражения величины износа

Износостойкость является эксплуатационным или служебным свойством материала, детали или сопряжения (трущихся поверхностей), поэтому износ может выражаться различными способами, ближе всего характеризующими их служебное назначение. Во многих случаях наиболее удобно выражать износ величиной уменьшения линейного размера тела в направлении, нормальном к поверхности (линейный износ). Если линейный износ Δh произошел на пути трения Δs за время Δt, то отношение Δh: Δs явится «интенсивностью линейного износа», или «темпом линейного износа», а отношение Δh: Δt – «скоростью линейного износа».

3. Учет приработки

Во всех процессах трения и изнашивания важное значение имеет приработка в начале эксплуатации машины. Приработкой называется процесс постепенного изменения в результате изнашивания начальной микрогеометрии (ее величины и напраления) и взаимного прилегания обеих поверхностей деталей до достижения стабильной шероховатости и постоянной величины прилегания.

В интенсивности изнашивания сопряжений деталей машин часто наблюдаются периоды приработки а , характеризующиеся повышенным размерным износом, и нормальной работы б , более устойчивой к износу (рис. 3).

Рис. 3. а – приработки; б – нормальной работы

Во время приработки интенсивность изнашивания постепенно снижается. Одновременно с явлениями изменения шероховатости и увеличения поверхности прилегания часто в процессе приработки происходит изменение физико-механических свойств поверхностных слоев трущихся металлов, поскольку в контакте преобладают пластические деформации (главным образом вследствие наклепа).

Высота и характер макро- и микронеровностей на трущихся поверхностях оказывают большое влияние на первоначальную стадию износа и изменение размера детали после приработки, потому что при уменьшении площади контакта поверхностей, из-за макро- и микронеровностей, возникают более высокие контактные напряжения, чем при более полном их прилегании.

Применение отделочных операций (выхаживания, суперфиниширования, хонингования, шабрения, притирки, доводки и др.) при обработке трущихся поверхностей уменьшает высоту неровностей и позволяет обеспечить более полное их прилегание.

Улучшение поверхностей трения происходит также в процессе первоначальной приработки, которая для устранения опасности задиров часто производится на пониженных режимах работы.

Заданным внешним условиям трения (нагрузка, скорость, смазка и т.п.) соответствует определенное состояние приработанности; при утяжелении этих условий происходит дополнительная приработка поверхностей.

4. Влияние условий работы на износ деталей

Распределение износа между трущимися поверхностями, а также по их длине и ширине имеет большое значение для работы механизма, долговечности деталей и стоимости ремонта.

В каждой трущейся паре предпочтителен более сильный износ простой и легко заменяемой детали и менее сильныйсложной и дорогой. При конструировании машин это учитывается соответствующим выбором материалов:

  • сложная деталь делается из более твердого металла и часто подвергается термической обработке и поверхностным покрытиям;
  • более простая деталь выполняется из более мягкого металла (например, втулки, вкладыши и т.д.).

Распределение износа по поверхности трения зависит от формы поверхности и условий работы пары.

Во вращательной паре с одним неподвижным и одним вращающимся элементами имеют место три следующих характерных случая распределения износа (а – подвижный вал, б – вал неподвижный).

– износ вращающегося элемента будет равномерным по всей поверхности, а неподвижного элемента – сосредоточен на одном участке поверхности (рис. 4). В результате ось вращения сместится в сторону местного износа, при этом положение ее центра вращения детали и ее балансировка не нарушаются. Неподвижным может быть как охватывающий, так и охватываемый элемент.
  • Вектор нагружающей силы следует за движением вращающегося элемента (рис. 5) – износ неподвижного элемента получается равномерным, износ вращающегося элемента – местным. Ось вращения после износа поверхностей соприкосновения не изменит своего положения, но вращающаяся деталь сместится относительно нее в сторону местного износа, что может привести к заметному увеличению дисбаланса,
  • Вектор нагружающей силы и подвижный элемент пары вращаются с различными угловыми скоростями – износ обеих трущихся поверхностей получается равномерным (рис. 6).

  • Рис. 4

    Рис. 5.

    К этому же случаю (рис. 6, в) относятся два вращающихся с различной скоростью элемента при постоянном направлении вектора нагружающей силы.

    Рис. 6.

    В двух первых случаях линейный суммарный износ может получиться меньшим, если из более износостойкого (твердого) материала будет изготовлена деталь с местным характером износа. Однако на практике обычно применяется обратное соотношение твердости поверхности материалов деталей по следующим соображениям:

    • сочетание слабого равномерного износа Δ1 одной детали с более сильным местным износом Δ2 другой детали (рис. 7, а) не приводит к существенному нарушению характера контакта поверхностей.

    Незначительное по величине уменьшение радиуса кривизны твердой равномерно изнашивающейся детали компенсируется местным износом другой детали, при этом зона контакта α (рис. 7, а) практически не уменьшается и удельное давление на поверхностях не возрастает.

    Рис. 7.

    Если же соотношение твердости поверхностей взять обратным рассмотренному, то сильный равномерный износ Δ1 мягкой детали при слабом местном износе Δ2 твердой детали приведет к значительному уменьшению зоны контакта α (рис. 7, б), увеличению удельного давления и повышению интенсивности износа;

    • замена детали с местным износом на новую восстанавливает нарушенное первоначальное положение оси вращения или положения центра вращения. Равномерное распределение износа в сочетании с большей твердостью металла обеспечивает незначительный износ более сложной и дорогой детали без нарушения в ней положения центра вращения изнашивающейся поверхности; местный характер износа в сочетании с мягким металлом концентрирует износ на менее трудоемкой, легко заменяемой детали (обычно втулка или вкладыш), отчего ремонт машины упрощается.

    Третий случай (рис. 6, в) характеризуется наименьшей величиной линейного суммарного износа поверхностей. Смещения оси вращения вследствие износа здесь не произойдет, нарушение же положения центра вращения поверхности будет равно сумме радиальных износов обоих элементов. Удельная работа трения, приходящаяся на единицу площади поверхности и равная произведению силы трения на относительное перемещение поверхностей, будет одинакова и равномерно распределена по обеим поверхностям. Поэтому выбор соотношения твердости поверхностей деталей диктуется только желанием сконцентрировать износ на той или иной детали по соображениям удобства ремонта. Обычно в таких случаях обе поверхности стремятся выполнить с возможно большей износостойкостью.

    Третий случай в чистом виде на практике встречается редко. Примером использования рассмотренного принципа может служить посадка неподвижного наружного кольца шарикоподшипника в корпус механизма с небольшим натягом; как установлено практикой, кольцо при работе постепенно поворачивается, обеспечивая равномерный износ дорожки, по которой катаются шарики.

    В поступательной паре всегда наблюдается тенденция к неравномерному износу поверхностей в связи с тем, что отдельные участки последних периодически выходят из соприкосновения.

    Неравномерный износ поверхностей со временем приводит к искажению их формы и нарушению правильного контакта. Чтобы ослабить это явление, следует для детали, имеющей равномерное или близкое к нему распределение удельной мощности сил трения, выбирать менее твердый материал, чем для сопряженной детали, работающей с сильно изменяющейся по длине удельной мощностью сил трения.

    Постоянство режима работы пары облегчает борьбу с износом. Например, если вал работает с постоянным числом оборотов в минуту, имеется возможность выбрать для его подшипников оптимальный режим жидкостного трения; если же число оборотов в минуту меняется в пределах 1:50 (металлорежущие станки), становится невозможным обеспечить жидкостное трение в подшипниках на всем диапазоне скоростей вращения. В этом случае выгодно применять подшипники качения.

    Режим работы кинематических пар нарушается при разбеге и выбеге машины. Наблюдениями установлено, что подшипники автомобильного двигателя за периоды разбега и выбега изнашиваются больше, чем за все время работы при установившемся движении. Одной из действенных мер борьбы с повышенным износом при разбеге машины является обильная подача смазки перед пуском машины насосом или ручным лубрикатором.