Сигнальные системы клеток растений тарчевский. Тарчевский И.А

Тарчевский И. А. Сигнальные системы клеток растений / отв. ред. А. Н. Гречкин. М. : Наука, 2002. 294 с.

УДК 633.11(581.14:57.04)

ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ РАСТЕНИЙ В АГРОПОПУЛЯЦИИ ПШЕНИЦЫ ПО КЛАССАМ ВАРИАЦИИ ЭЛЕМЕНТОВ ПРОДУКТИВНОСТИ КОЛОСА

А. А. Горюнов, М. В. Ивлева, С. А. Степанов

Условия вегетации существенно сказываются на распределении растений в агропопуляции твердой пшеницы по классам вариации числа колосков, количества зерновок колоса и их массы. Среди сортов саратовской селекции в условиях экстремального по агроклиматическим условиям года характерно разное число растений: стародавним сортам - небольших классов, новым сортам - больших классов вариации. Благоприятные агроклиматические условия повышают число растений, относимых к более высоким классам вариации элементов продуктивности колоса.

Ключевые слова: сорт, колосок, зерновка, пшеница.

FEATURES DISTRIBUTION OF PLANTS IN WHEAT AGROPOPULATION ON CLASSES OF THE VARIATION OF ELEMENTS EFFICIENCY OF THE EAR

A. A. Goryunov, M. V. Ivleva, S. A. Stepanov

Vegetation conditions essentially affect distribution of plants in agropopulation of durum wheat on classes of a variation number of spikelets, quantities kernels an ear and their weight. Among cultivars of the Saratov selection in the conditions of extreme year on agroclimatic conditions it is characteristic various number of plants: to age-old cultivars - the small classes, to new cultivars - the big classes of a variation. Favorable agroclimatic conditions raise number of the plants carried to higher classes of a variation of elements of efficiency of an ear.

Key words: cultivar, spikelet, kernel, wheat.

В морфогенезе пшеницы, по мнению исследователей (Морозова, 1983, 1986), можно выделить несколько фаз: 1) морфогенез апикальной части меристемы зародышевой почки, приводящий к формированию зачаточного главного побега; 2) морфогенез элементов фитомеров зачаточного главного побега в органы растения, определяющий габитус куста. Первая фаза (первичный органогенез - по Ростовцевой,1984) определяет как бы матрицу растения. Как установлено (Ростовцева, 1978; Морозова, 1986; Степанов, Мостовая, 1990; Adams, 1982), особенности прохождения первичных процессов органогенеза отражаются в последующем структурообразовании.

Формирование фитомеров вегетативной зоны зачаточного главного побега является, по мнению исследователей (Морозова, 1986, 1988), процессом видоспецифическим, тогда как развертывание элементов фитоме-ров зачаточного главного побега в функционирующие органы растений - процесс сортоспецифический. Процесс формирования фитомеров генеративной зоны побега - более сортоспецифический (Морозова, 1994).

Наиболее контрастно выражена значимость первичных морфоге-нетических процессов, т.е. заложение и формирование фитомеров вегетативной и генеративной зон побега пшеницы и их последующая реализация в соответствующих агроклиматических условиях при анализе структуры урожая по вариационным кривым элементов продуктивности побегов (Морозова,1983, 1986; Степанов, 2009). Этому предшествует выборочный учёт распределения растений в их агропопуляции по классам вариации отдельных элементов продуктивности, в частности количеству колосков, числу зерновок в колосе, массе зерновок колоса.

Материал и методика

Исследования проводились в 2007-2009 гг. В качестве объектов изучения были выбраны следующие сорта яровой твёрдой пшеницы саратовской селекции: Гордеиформе 432, Мелянопус 26, Мелянопус 69, Саратовская 40, Саратовская 59, Саратовская золотистая, Людмила, Валентина, Ник, Елизаветинская, Золотая волна, Аннушка, Крассар. Основные наблюдения и учеты проводились в полевых мелкоделяночных опытах на полях пристанционного селекционного севооборота НИИСХ Юго-Востока и Ботанического сада СГУ, повторность опытов 3-кратная. Для проведения структурного анализа продуктивности сортов пшеницы брали в конце вегетации по 25 растений из каждой повторности, которые затем объединяли в группу и методом случайной выборки отбирали из неё для анализа 25 растений. Учитывались число колосков, число зерен в колосках, масса одного зерна. На основании полученных данных опре-

деляли в соответствии с методикой З. А. Морозовой (1983) особенности распределения растений в агропопуляции твёрдой пшеницы по классам вариации элементов продуктивности колоса. Статистическую обработку результатов исследований проводили с использованием пакета программы Excel Windows 2007.

Результаты и их обсуждение

Как показали наши исследования, в условиях вегетации 2007 г. основное число главных побегов пшеницы сортов саратовской селекции по количеству колосков колоса находилось во 2- и 3-м классах вариации. Лишь незначительное число растений были отнесены к 1-му классу - 4% (табл. 1).

Таблица 1. Число побегов пшеницы сортов саратовской селекции по классам вариации количества колосков колоса, % (2007 г.)

Сорт Класс вариации

1-й 2-й 3-й 4-й 5-й

Гордеиформе 432 0 92 8 0 0

Мелянопус 26 4 76 20 0 0

Мелянопус 69 4 64 32 0 0

Саратовская 40 7 93 0 0 0

Стародавние 4 81 15 0 0

Саратовская 59 4 76 20 0 0

Саратовская золотистая 0 16 80 4 0

Людмила 8 44 48 0 0

Валентина 0 16 76 8 0

Ник 14 14 72 0 0

Елизаветинская 0 24 72 4 0

Золотая волна 8 16 52 24 0

Аннушка 0 20 64 16 0

Крассар 0 20 48 32 0

Новые 4 27 59 10 0

При анализе сортов по группам было установлено, что для стародавних сортов характерно большее число растений 2-го класса вариации (81%) и меньшее число растений 3-го класса вариации (15%). По группе новых сортов выявлено, что большее число растений относятся к 3-му классу вариации (59%), некоторая часть растений 4-го класса вариации (10%). Установлено, что у некоторых новых сортов число растений 4-го класса вариации больше 10% - Крассар (32%), Золотая волна (24%), Аннушка (16%), а у отдельных сортов их число меньше 10% (Валентина,

Саратовская золотистая, Елизаветинская) или не наблюдается вовсе - Саратовская 59, Людмила, Ник (см. табл. 1).

В условиях вегетации 2008 г., который отличался более благоприятным агроклиматическим состоянием, среди сортов саратовской селекции, как стародавних, так и новых, большее число растений по количеству колосков колоса были отнесены к 3-му классу вариации. Ни одного растения, как и в предшествующий год, не было представлено в 5-м классе вариации. Характерно, что, в отличие от новых сортов твердой пшеницы, большее число растений 2-го класса вариации отмечено у стародавних сортов - 41% (табл. 2).

Таблица 2. Число побегов пшеницы сортов саратовской селекции по классам вариации количества колосков колоса, % (2008 г.)

Сорт Класс вариации

1-й 2-й 3-й 4-й 5-й

Гордеиформе 432 12 20 60 8 0

Мелянопус 26 4 36 56 4 0

Мелянопус 69 4 48 48 0 0

Саратовская 40 4 60 28 8 0

Стародавние 6 41 48 5 0

Саратовская 59 28 48 24 0 0

Саратовская золотистая 0 28 64 8 0

Людмила 8 44 48 0 0

Валентина 4 28 64 4 0

Ник 4 28 68 0 0

Елизаветинская 8 36 52 4 0

Золотая волна 4 12 68 16 0

Аннушка 0 28 60 12 0

Крассар 8 28 32 32 0

Новые 7 32 52,5 8,5 0

Среди новых сортов твердой пшеницы выделялись сорта, для которых, как и в предыдущий год, характерно наличие части растений в 4-м классе вариации по количеству колосков колоса - Крассар (32%), Золотая волна (16%), Аннушка (12%), Саратовская золотистая (8%), Валентина (4%), Елизаветинская (4%), т. е. наблюдалась та же тенденция, что и в предыдущий, 2007 г. (см. табл. 2).

В условиях вегетации 2009 г. большая часть растений пшеницы сортов саратовской селекции по количеству колосков колоса была отнесена к 4-му и 3-му классам вариации: новые сорта - 45 и 43% соответственно, стародавние сорта - 30 и 51% соответственно. Характерно, что некото-

рым сортам свойственно наличие большего относительно среднего значения числа растений 4-го класса вариации - Аннушка (76%), Валентина (64%), Ник (56%), Золотая волна (52%), Саратовская 40 (48%). У некоторых сортов отмечены растения 5-го класса вариации - Золотая волна (12%), Крассар (8%), Людмила (8%), Гордеиформе 432 и Саратовская 40 - 4% (табл. 3).

Таблица 3. Число побегов пшеницы сортов саратовской селекции по классам вариации количества колосков колоса, % (2009 г.)

Сорт Класс вариации

Гордеиформе 432 4 12 52 28 4

Мелянопус 26 4 36 44 16 0

Мелянопус 69 0 8 64 28 0

Саратовская 40 0 4 44 48 4

Стародавние 2 15 51 30 2

Саратовская 59 0 28 48 24 0

Саратовская золотистая 4 8 72 16 0

Людмила 0 4 56 32 8

Валентина 0 0 36 64 0

Ник 4 4 36 56 0

Елизаветинская 4 12 40 44 0

Золотая волна 0 4 32 52 12

Аннушка 0 0 24 76 0

Крассар 0 8 40 44 8

Новые 1 8 43 45 3

Таким образом, проведенные исследования показали, что условия вегетации существенно сказываются на распределении растений в агро-популяции по классам вариации количества колосков колоса. Среди сортов саратовской селекции в условиях экстремального по агроклиматическим условиям года характерно большее число растений: стародавним сортам - 2-го класса, новым сортам - 3-го класса, а некоторым из них 4-го класса вариации. При благоприятных агроклиматических условиях повышается число растений, относимых к более высоким классам вариации по числу колосков колоса твердой пшеницы.

В условиях вегетации 2007 г. число главных побегов пшеницы сортов саратовской селекции по количеству зерновок колоса находилось во 1-м и 2-м классах вариации. Лишь часть растений некоторых сортов были отнесены к 3-, 4-и 5-му классам (табл. 4).

Сорт Класс вариации

1-й 2-й 3-й 4-й 5-й

Гордеиформе 432 96 4 0 0 0

Мелянопус 26 96 4 0 0 0

Мелянопус 69 92 8 0 0 0

Саратовская 40 93 7 0 0 0

Стародавние 94 6 0 0 0

Саратовская 59 80 20 0 0 0

Саратовская золотистая 20 48 32 0 0

Людмила 0 64 24 12 0

Валентина 48 36 16 0 0

Ник 28 62 10 0 0

Елизаветинская 48 48 4 0 0

Золотая волна 12 32 48 4 4

Аннушка 52 36 12 0 0

Крассар 88 8 4 0 0

Новые 42 39 17 1,5 0,5

При анализе сортов по группам было установлено, что для стародавних сортов характерно большее число растений 1-го класса вариации (94%) и очень незначительная доля растений 2-го класса вариации (6%). По группе новых сортов выявлено, что большее число растений отдельных сортов также относятся к 1-му классу вариации - Крассар (88%), Саратовская 59 (80%), Аннушка (52%), Валентина (48%), Елизаветинская (48%), отдельных сортов - ко 2-му классу вариации - Людмила (64%), Ник (62%), Саратовская золотистая (48%), Елизаветинская (48%) или же к 3-му классу - Золотая волна - 48% (см. табл. 3). У двух сортов отмечены растения 4-го класса вариации по количеству зерновок колоса - Людмила (12%) и Золотая волна - 4% (см. табл. 4).

В период вегетации 2008 г., который, как уже отмечалось ранее, отличался более благоприятными агроклиматическими условиями, среди сортов саратовской селекции, как стародавних, так и новых, большее число растений по количеству колосков колоса было отнесено ко 2- и 3-му классам вариации. Однако среди стародавних сортов два сорта отличались большим относительно средних значений числом растений 2-го класса - Саратовская 40 и Мелянопус 69 - соответственно 72 и 48%. Среди новых сортов 3 сорта также отличались большим относительно средних значений числом растений 2-го класса - Саратовская 59 и Валентина (72%), Людмила - 64%.

В отличие от предыдущего года среди сортов саратовской селекции характерно наличие некоторого числа растений, отнесенных к 4-му классу вариации по количеству зерновок колоса. Особенно это свойственно сортам Мелянопус 26, Елизаветинская, Людмила, Гордеиформе 432, Мелянопус 69, Ник, Аннушка (табл. 5).

Таблица 5. Число побегов пшеницы сортов саратовской селекции по классам вариации количества зерновок колоса, % (2008 г.)

Сорт Класс вариации

1-й 2-й 3-й 4-й 5-й

Гордеиформе 432 0 28 56 8 8

Мелянопус 26 0 24 48 24 4

Мелянопус 69 4 48 40 8 0

Саратовская 40 0 72 24 4 0

Стародавние 1 43 42 11 3

Саратовская 59 20 72 8 0 0

Саратовская золотистая 4 36 56 4 0

Людмила 0 64 24 12 0

Валентина 0 72 28 0 0

Ник 0 32 60 8 0

Елизаветинская 0 48 32 20 0

Золотая волна 12 32 48 4 4

Аннушка 4 44 40 8 4

Крассар 4 40 52 4 0

Новые 5 49 39 6 1

В условиях вегетации 2009 г. распределение растений пшеницы сортов саратовской селекции по количеству колосков колоса было различным в зависимости от групповой принадлежности - стародавние или новые сорта. По группе стародавних сортов большая часть растений были отнесены к 3- и 4-му классам вариации - 42,5% и 27% соответственно. У двух сорта, Мелянопус 26 и Мелянопус 69, наблюдались растения 5-го класса вариации по количеству зерновок колоса (табл. 6).

Среди новых сортов большая часть растений была отнесена к 3- и 2-му классам - 50,5 и 24% соответственно (табл. 6) . Характерно, что некоторым сортам свойственно наличие большего относительно среднего значения числа растений соответствующего класса: 2-го класса вариации - Саратовская 59 (56%), Елизаветинская (32%), Крассар (32%), Гордеиформе 32 (28%), Саратовская золотистая (28%); 3-го класса вариации - Валентина (72%), Аннушка (60%), Крассар (56%), Саратовская 40 (52%), Ник (52%), Елизаветинская (52%); 4-го класса вариации - Зо-

лотая волна (36%), Аннушка (32%), Саратовская золотистая и Людмила (20%). Примечательно, что в отличие от предыдущих лет в условиях 2009 г. часть растений половины сортов находилась в 5-м классе вариации по количеству зерновок колоса - Людмила, Ник, Золотая волна, Аннушка, Мелянопус 26 и Мелянопус 69 (см. табл. 6).

Таблица 6. Число побегов пшеницы сортов саратовской селекции по классам вариации количества зерновок колоса, % (2009 г.)

Сорт Класс вариации

1-й 2-й 3-й 4-й 5-й

Гордеиформе 432 12 28 28 32 0

Мелянопус 26 8 22 46 20 4

Мелянопус 69 12 8 44 32 4

Саратовская 40 4 20 52 24 0

Стародавние 9 19,5 42,5 27 2

Саратовская 59 12 56 24 8 0

Саратовская золотистая 4 28 48 20 0

Людмила 0 12 52 20 16

Валентина 4 20 72 4 0

Ник 8 24 52 8 8

Елизаветинская 4 32 52 12 0

Золотая волна 4 12 40 36 8

Аннушка 4 0 60 32 4

Крассар 12 32 56 0 0

Новые 6 24 50,5 15,5 4

Проведенные исследования показали, что условия вегетации существенно сказываются на распределении растений в агропопуляции по классам вариации количества зерновок колоса. Среди сортов саратовской селекции в условиях экстремального по агроклиматическим условиям года характерно большее число растений: стародавним сортам - 1-го класса, новым сортам -1-, 2- и 3-го классов, а некоторым из них 4-го класса вариации. При благоприятных агроклиматических условиях повышается число растений, относимых к более высоким классам вариации по числу зерновок колоса твердой пшеницы.

В условиях вегетации 2007 г. число главных побегов пшеницы сортов саратовской селекции по массе зерновок колоса находилось в 1- и 2-м классах вариации (табл. 7).

При анализе сортов по группам было установлено, что для некоторых стародавних сортов число растений 1-го класса вариации составляло

100% - Гордеиформе 432 и Мелянопус 26,93% - Саратовская 40. Существенно отличался в этом плане стародавний сорт Мелянопус 69, для которого характерно большее число растений 2-го класса - 80%. По группе новых сортов выявлено, что некоторым сортам свойственно большее относительно среднего значения число растений соответствующего класса: 1-го класса - Золотая волна (96%), Саратовская 59 (80%), Крассар (76%), Аннушка (68%); 2-го класса - Ник (52%), Людмила (48%), Саратовская золотистая (44%), Валентина и Елизаветинская (40%); 3-го класса вариации - Людмила (28%), Саратовская золотистая (24%), Ник (14%), Валентина - 12%. Примечательно, что у двух сортов, Людмила и Валентина, наблюдались растения 5-го класса вариации по массе зерновок колоса -соответственно 12 и 4% (см. табл. 7).

Таблица 7. Число побегов пшеницы сортов саратовской селекции по классам вариации массы зерновок, % (2007 г.)

Сорт Класс вариации

1-й 2-й 3-й 4-й 5-й

Гордеиформе 432 100 0 0 0 0

Мелянопус 26 100 0 0 0 0

Мелянопус 69 4 80 16 0 0

Саратовская 40 93 7 0 0 0

Стародавние 74 22 4 0 0

Саратовская 59 80 16 4 0 0

Саратовская золотистая 32 44 24 0 0

Людмила 12 48 28 12 0

Валентина 44 40 12 4 0

Ник 28 52 14 6 0

Елизаветинская 56 40 4 0 0

Золотая волна 96 4 0 0 0

Аннушка 68 32 0 0 0

Крассар 76 20 4 0 0

Новые 55 33 9,5 2,5 0

В условиях вегетации 2008 г. наблюдалось разное число растений соответствующего класса вариации по массе зерновок колоса. Среди стародавних сортов саратовской селекции большее число растений по этому элементу продуктивности соответствовало 2-му классу вариации - 48%, среди новых сортов - 3- и 2-му классам вариации - соответственно 38 и 36%. Некоторое число растений соответствующих сортов распределено в 4- и 5-м классах вариации (табл. 8).

Сорт Класс вариации

1-й 2-й 3-й 4-й 5-й

Гордеиформе 432 12 48 32 4 4

Мелянопус 26 0 32 44 12 12

Мелянопус 69 16 60 20 4 0

Саратовская 40 24 52 12 8 4

Стародавние 13 48 27 7 5

Саратовская 59 48 48 4 0 0

Саратовская золотистая 4 24 64 4 4

Людмила 12 48 28 12 0

Валентина 4 36 56 0 4

Ник 12 44 32 12 0

Елизаветинская 8 36 36 20 0

Золотая волна 8 28 40 20 4

Аннушка 8 36 36 16 4

Крассар 4 28 48 20 0

Новые 12 36 38 12 2

Некоторые саратовские сорта отличались большим относительно среднего значения представительством растений соответствующего класса вариации по массе зерновок колоса: 1-го класса - Саратовская 59 (48%), Саратовская 40 (24%), Мелянопус 69 (16%); 2-го класса - Мелянопус 69 (60%), Саратовская 40 (52%), Саратовская 59 и Людмила (48% соответственно), Ник (44%); 3-го класса - Саратовская золотистая (64%), Валентина (56%), Крассар (48%), Мелянопус 26 (44%); 4-го класса - Елизаветинская, Золотая волна и Крассар (20% соответственно); 5-го класса вариации - Мелянопус 26 - 12% (см. табл. 8).

В условиях вегетации 2009 г. большая часть растений пшеницы сортов саратовской селекции по массе зерновок колоса была отнесена к 3- и 4-му классам вариации. Причём средние значения классов вариации группы стародавних сортов и группы новых сортов существенно различались. В частности, стародавние сорта отличались большим представительством растений 3- и 4-го классов вариации - 41,5 и 29,5% соответственно, новые сорта отличались преимущественным присутствием в агропопуляции растений 4- и 3-го классов вариации - 44 и 26% соответственно. Обращает на себя внимание значительное число растений 5-го класса вариации по массе зерновок колоса, что особенно свойственно сортам Крассар (32%), Валентина (24%), Золотая волна (20%), Саратовская 40-16% (табл. 9).

Сорт Класс вариации

1-й 2-й 3-й 4-й 5-й

Гордеиформе 432 4 16 48 32 0

Мелянопус 26 4 28 38 18 12

Мелянопус 69 0 8 48 40 4

Саратовская 40 4 20 32 28 16

Стародавние 3 18 41,5 29,5 8

Саратовская 59 14 36 38 8 4

Саратовская золотистая 4 8 28 52 8

Людмила 0 0 12 80 8

Валентина 0 8 28 40 24

Ник 8 20 28 36 8

Елизаветинская 0 20 24 44 12

Золотая волна 0 16 32 32 20

Аннушка 4 8 32 56 0

Крассар 0 8 12 48 32

Новые 3 14 26 44 13

Так же как и в другие годы, некоторые сорта отличались большим относительно среднего значения представительством растений соответствующего класса вариации по массе зерновок колоса: 1-го класса - Саратовская 59 (14%); 2-го класса - Саратовская 59 (36%), Мелянопус 26 (28%), Саратовская 40, Ник и Елизаветинская (соответственно 20%); 3-го класса вариации - Гордеиформе 432 и Мелянопус 69 (48% соответственно), Саратовская 59 (38%), Золотая волна и Аннушка (32% соответственно); 4-го класса вариации - Людмила (80%), Аннушка (56%), Саратовская золотистая (52%), Крассар (48%), Мелянопус 69-40% (см. табл. 9).

Таким образом, проведенные исследования показали, что на распределение растений в агропопуляции по классам вариации массы зерновок колоса существенно влияют условия вегетации. Для большинства стародавних сортов в экстремальных условиях вегетации число растений 1-го класса составляет 93-100%, тогда как новые сорта выгодно отличаются существенным представительством растений 2- и 3-го классов. В благоприятных условиях вегетации доля растений более высокого класса вариации увеличивается, но для новых сортов сохраняется та же тенденция - большее число растений более высоких классов вариации по массе зерновок колоса по сравнению со стародавними сортами.

Морозова З. А. Морфогенетический анализ в селекции пшеницы. М. : МГУ, 1983. 77 с.

Морозова З. А. Основные закономерности морфогенеза пшеницы и их значение для селекции. М. : МГУ, 1986. 164 с.

Морозова З. А. Морфогенетический аспект проблемы продуктивности пшеницы // Морфогенез и продуктивность растений. М. : МГУ, 1994. С. 33-55.

Ростовцева З. П. Влияние фотопериодической реакции растения на функцию верхушечной меристемы в вегетативном и генеративном органогенезе // Свет и морфогенез растений. М., 1978. С. 85-113.

Ростовцева З. П. Рост и дифференцировка органов растения. М. : МГУ 1984. 152 с.

Степанов С. А., Мостовая Л. А. Оценка продуктивности сорта по первичному органогенезу побега пшеницы // Продукционный процесс, его моделирование и полевой контроль. Саратов: Изд-во Сарат. ун-та, 1990. С. 151-155.

Степанов С. А. Морфогенетические особенности реализации продукционного процесса у яровой пшеницы // Изв. СГУ Сер., Химия, биология, экология. 2009. Т. 9, вып.1. С. 50-54.

Adams M. Plant development and crop productivity // CRS Handbook Agr. Productivity. 1982. Vol.1. P. 151-183.

УДК 633.11: 581.19

Ю. В. Даштоян, С. А. Степанов, М. Ю. Касаткин

Саратовский государственный университет им. Н. Г. Чернышевского 410012, г. Саратов, ул. Астраханская, 83 e-mail: [email protected]

Установлены особенности в содержании пигментов различных групп (хлорофиллов а и b, каротиноидов), как и соотношения между ними в листьях пшеницы, принадлежащих разным фитомерам побега. Минимальное или максимальное содержание хлорофиллов и каротиноидов может наблюдаться в различных листьях, что зависит от условий вегетации растений.

Ключевые слова: фитомер, хлорофилл, каротиноид, лист, пшеница.

STRUCTURE AND THE MAINTENANCE OF PIGMENTS OF PHOTOSYNTHESIS IN THE PLATE OF LEAVES OF WHEAT

Y. V. Dashtojan, S. A. Stepanov, M. Y. Kasatkin

Features in the maintenance of pigments of various groups (chlorophyll а and chlorophyll b, carotenoids), as well as parities between them in the leaves of wheat

Чтобы сузить результаты поисковой выдачи, можно уточнить запрос, указав поля, по которым производить поиск. Список полей представлен выше. Например:

Можно искать по нескольким полям одновременно:

Логически операторы

По умолчанию используется оператор AND .
Оператор AND означает, что документ должен соответствовать всем элементам в группе:

исследование разработка

Оператор OR означает, что документ должен соответствовать одному из значений в группе:

исследование OR разработка

Оператор NOT исключает документы, содержащие данный элемент:

исследование NOT разработка

Тип поиска

При написании запроса можно указывать способ, по которому фраза будет искаться. Поддерживается четыре метода: поиск с учетом морфологии, без морфологии, поиск префикса, поиск фразы.
По-умолчанию, поиск производится с учетом морфологии.
Для поиска без морфологии, перед словами в фразе достаточно поставить знак "доллар":

$ исследование $ развития

Для поиска префикса нужно поставить звездочку после запроса:

исследование*

Для поиска фразы нужно заключить запрос в двойные кавычки:

" исследование и разработка"

Поиск по синонимам

Для включения в результаты поиска синонимов слова нужно поставить решётку "# " перед словом или перед выражением в скобках.
В применении к одному слову для него будет найдено до трёх синонимов.
В применении к выражению в скобках к каждому слову будет добавлен синоним, если он был найден.
Не сочетается с поиском без морфологии, поиском по префиксу или поиском по фразе.

# исследование

Группировка

Для того, чтобы сгруппировать поисковые фразы нужно использовать скобки. Это позволяет управлять булевой логикой запроса.
Например, нужно составить запрос: найти документы у которых автор Иванов или Петров, и заглавие содержит слова исследование или разработка:

Приблизительный поиск слова

Для приблизительного поиска нужно поставить тильду "~ " в конце слова из фразы. Например:

бром~

При поиске будут найдены такие слова, как "бром", "ром", "пром" и т.д.
Можно дополнительно указать максимальное количество возможных правок: 0, 1 или 2. Например:

бром~1

По умолчанию допускается 2 правки.

Критерий близости

Для поиска по критерию близости, нужно поставить тильду "~ " в конце фразы. Например, для того, чтобы найти документы со словами исследование и разработка в пределах 2 слов, используйте следующий запрос:

" исследование разработка"~2

Релевантность выражений

Для изменения релевантности отдельных выражений в поиске используйте знак "^ " в конце выражения, после чего укажите уровень релевантности этого выражения по отношению к остальным.
Чем выше уровень, тем более релевантно данное выражение.
Например, в данном выражении слово "исследование" в четыре раза релевантнее слова "разработка":

исследование^4 разработка

По умолчанию, уровень равен 1. Допустимые значения - положительное вещественное число.

Поиск в интервале

Для указания интервала, в котором должно находиться значение какого-то поля, следует указать в скобках граничные значения, разделенные оператором TO .
Будет произведена лексикографическая сортировка.

Такой запрос вернёт результаты с автором, начиная от Иванова и заканчивая Петровым, но Иванов и Петров не будут включены в результат.
Для того, чтобы включить значение в интервал, используйте квадратные скобки. Для исключения значения используйте фигурные скобки.

Устойчивость растений к патогенам определяется, как было установлено Х.Флором в 50-е годы 20 века взаимодействием комплементарной пары генов растения-хозяина и патогена, соответственно, гена устойчивости (R) и гена авирулентности (Аvr). Специфичность их взаимодействия предполагает, что продукты экспрессии этих генов участвуют в распознавании растением патогена с последующим активированием сигнальных процессов для включения защитных реакций.

В настоящее время известно 7 сигнальных систем: циклоаденилатная, MAP-киназная (mitogen-activated protein-kinase), фосфатидокислотная, кальциевая, липоксигеназная, НАДФ·Н-оксидазная (супероксидсинтазная), NO-синтазная.

В пяти первых сигнальных системах посредником между цитоплазматической частью рецептора и первым активируемым ферментом являются G-белки. Эти белки локализованы на внутренней стороне плазмалеммы. Их молекулы состоят из трех субъединиц: a, b и g.

Циклоаденилатная сигнальная система. Взаимодействие стрессора с рецептором на плазмалемме приводит к активации аденилатциклазы, которая катализирует образование циклического аденозинмонофосфата (цАМФ) из АТФ. цАМФ активирует ионные каналы, включая кальциевую сигнальную систему, и цАМФ-зависимые протеинкиназы. Эти ферменты активируют белки-регуляторы экспрессии защитных генов, фосфорилируя их.

MAP-киназная сигнальная система. Активность протеинкиназ повышается у растений, подвергнутых стрессовым воздействиям (синий свет, холод, высушивание, механическое повреждение, солевой стресс), а также обработанных этиленом, салициловой кислотой или инфицированных патогеном.

В растениях функционирует протеинкиназный каскад как путь передачи сигналов. Связывание элиситора с рецептором плазмалеммы активирует МАР-киназы. Она катализирует фосфорилирование цитоплазматической киназы МАР-киназы, которая активирует при двойном фосфорилировании треониновых и тирозиновых остатков МАР-киназу. Она переходит в ядро, где фосфорилирует белки-регуляторы транскрипции.


Фосфатидокислотная сигнальная система. В клетках животных G белки под воздействием стрессора активируют фосфолипазы C и D. Фосфолипаза С гидролизует фосфатидилинозитол-4,5-бифосфат с образованием диацилглицерола и инозитол-1,4,5-трифосфата. Последний освобождает Са2+ из связанного состояния. Повышенное содержание ионов кальция приводит к активации Са2+-зависимых протеинкиназ. Диацилглицерол после фосфорилирования специфичной киназой превращается в фосфатидную кислоту, которая является сигнальным веществом в животных клетках. Фосфолипаза D непосредственно катализирует образование фосфатидной кислоты из липидов (фосфатидилхолин, фосфатидилэтаноламин) мембран.

У растений стрессоры активируют G белки, фосфолипазы С и D у растений. Следовательно, начальные этапы этого сигнального пути одинаковы у животных и растительных клеток. Можно предположить, что в растениях также происходит образование фосфатидной кислоты, которая может активировать протеинкиназы с последующим фосфорилированием белков, в том числе и факторов регуляции транскрипции.

Кальциевая сигнальная система. Воздействие различных факторов (красного света, засоления, засухи, холода, теплового шока, осмотического стресса, абсцизовой кислоты, гиббереллина и патогенов) приводит к повышению содержания ионов кальция в цитоплазме за счет увеличения импорта из внешней среды и выхода из внутриклеточных хранилищ (эндоплазматического ретикулума и вакуоли)

Повышение концентрации ионов кальция в цитоплазме приводит к активации растворимых и мембранносвязанных Са2+-зависимых протеинкиназ. Они участвуют в фосфорилировании белковых факторов регуляции экспрессии защитных генов. Однако было показано, что Са2+ способен непосредственно влиять на человеческий репрессор транскрипции, не задействуя каскад фосфорилирования белков. Также ионы кальция активируют фосфатазы и фосфоинозитспецифичную фосфолипазу С. Регулирующее действие кальция зависит от его взаимодействия с внутриклеточным рецептором кальция - белком кальмодулином.

Липоксигеназная сигнальная система. Взаимодействие элиситора с рецептором на плазмалемме приводит к активации мембранносвязанной фосфолипазы А2, которая катализирует выделение из фосфолипидов плазмалеммы ненасыщенных жирных кислот, в том числе линолевой и линоленовой. Эти кислоты являются субстратами для липоксигеназы. Субстратами для этого фермента могут быть не только свободные, но и входящие в состав триглицеридов ненасыщенные жирные кислоты. Активность липоксигеназ повышается при действии элиситоров, заражении растений вирусами и грибами. Увеличение активности липоксигеназ обусловлено стимуляцией экспрессии генов, кодирующих эти ферменты.

Липоксигеназы катализируют присоединение молекулярного кислорода к одному из атомов (9 или 13) углерода цис,цис-пентадиенового радикала жирных кислот. Промежуточные и конечные продукты липоксигеназного метаболизма жирных кислот обладают бактерицидными, фунгицидными свойствами и могут активировать протеинкиназы. Так, летучие продукты (гексенали и ноненали) токсичны для микроорганизмов и грибов, 12-гидрокси-9Z-додеценовая кислота стимулировала фосфорилирование белков у растений гороха, фитодиеновая, жасмоновая кислоты и метилжасмонат через активирование протеинкиназ повышают уровень экспресии защитных генов.

НАДФ·Н-оксидазная сигнальная система. Во многих случаях заражение патогенами стимулировало продукцию реактивных форм кислорода и гибель клеток. Реактивные формы кислорода не только токсичны для патогена и инфицированной клетки растения-хозяина, но и являются участниками сигнальной системы. Так, перекись водорода активирует факторы регуляции транскрипции и экспрессию защитных генов.

NO-синтазная сигнальная система. В макрофагах животных, убивающих бактерии, наряду с реактивными формами кислорода действует окись азота, усиливающая их антимикробное действие. В животных тканях L-аргинин под действием NO-синтазы превращается в цитруллин и NO. Активность этого фермента была обнаружена и в растениях, причем вирус табачной мозаики индуцировал повышение его активности в устойчивых растениях, но не влиял на активность NO-синтазы в чувствительных растениях. NO, взаимодействуя с супероксидом кислорода, образует очень токсичный пероксинитрил. При повышенной концентрации окиси азота активируется гуанилатциклаза, которая катализирует синтез циклического гуанозинмонофосфата. Он активирует протеинкиназы непосредственно или через образование циклической АДФ-рибозы, которая открывает Са2+ каналы и тем самым повышает концентрацию ионов кальция в цитоплазме, что в свою очередь, приводит к активации Са2+-зависимых протеинкиназ.

Таким образом, в клетках растений существует скоординированная система сигнальных путей, которые могут действовать независимо друг от друга или сообща. Особенностью работы сигнальной системы является усиление сигнала в процессе его передачи. Включение сигнальной системы в ответ на воздействие различных стрессоров (в том числе и патогенов) приводит к активации экспрессии защитных генов и повышению устойчивости растений.

Индуцированные механизмы: а) усиление дыхания, б) накопление веществ, обеспечивающих устойчивость, в) создание дополнительных защитных механических барьеров, г) развитие реакция сверхчувствительности.

Патоген, преодолев поверхностные барьеры и попав в проводящую систему и клетки растения, вызывает заболевание растения. Характер заболевания зависит от устойчивости растения. По степени устойчивости выделяют четыре категории растений: чувствительные, толерантные, сверхчувствительные и крайне устойчивые (иммунные). Кратко охарактеризуем их на примере взаимодействия растений с вирусами.

В чувствительных растениях вирус транспортируется из первично зараженных клеток по растению, хорошо размножается и вызывает разнообразные симптомы заболевания. Однако и в чувствительных растениях существуют защитные механизмы, ограничивающие вирусную инфекцию. Об этом свидетельствует, например, возобновление репродукции вируса табачной мозаики в протопластах, изолированных из зараженных листьев растений табака, в которых закончился рост инфекционности. Темно-зеленые зоны, образующиеся на молодых листьях больных чувствительных растений, характеризуются высокой степенью устойчивости к вирусам. Клетки этих зон почти не содержат вирусных частиц по сравнению с соседними клетками светло-зеленой ткани. Низкий уровень накопления вирусов в клетках темно-зеленой ткани связан с синтезом антивирусных веществ. В толерантных растениях вирус распространяется по всему растению, но плохо размножается и не вызывает симптомов. В сверхчувствительных растениях первично инфицированные и соседние клетки некротизируются, локализуя вирус в некрозах. Считается, что в крайне устойчивых растениях вирус репродуцируется только в первично зараженных клетках, не транспортируется по растению и не вызывает симптомов заболевания. Однако был показан транспорт вирусного антигена и субгеномных РНК в этих растениях, а при выдерживании зараженных растений при пониженной температуре (10-15оС) на инфицированных листьях формировались некрозы.

Наиболее хорошо изучены механизмы устойчивости сверхчувствительных растений. Образование локальных некрозов является типичным симптомом сверхчувствительной реакции растений в ответ на поражение патогеном. Они возникают в результате гибели группы клеток в месте внедрения патогена. Смерть инфицированных клеток и создание защитного барьера вокруг некрозов блокируют транспорт инфекционного начала по растению, препятствует доступу к патогену питательных веществ, вызывают элиминацию патогена, приводят к образованию антипатогенных ферментов, метаболитов и сигнальных веществ, которые активируют защитные процессы в соседних и отдаленных клетках, и в конечном итоге, способствуют выздоровлению растения. Гибель клеток происходит из-за включения генетической программы смерти и образования соединений и свободных радикалов, токсичных как для патогена, так и для самой клетки.

Некротизация инфицированных клеток сверхчувствительных растений, контролируемая генами патогена и растения-хозяина, является частным случаем программированной клеточной смерти (PCD – programmed cell death). PCD необходима для нормального развития организма. Так, она происходит, например, при дифференциации трахеидных элементов в ходе образования ксилемных сосудов и гибели клеток корневого чехлика. Эти периферические клетки погибают даже тогда, когда корни растут в воде, то есть гибель клеток является частью развития растения, а не вызвана действием почвы. Сходство между PCD и гибелью клеток при сверхчувствительной реакции заключается в том, что это два активных процесса, в некротизирующейся клетке также повышается содержание ионов кальция в цитоплазме, образуются мембранные пузырьки, увеличивается активность дезоксирибонуклеаз, ДНК распадается на фрагменты с 3’ОН концами, происходит конденсация ядра и цитоплазмы.

Помимо включения PCD, некротизация инфицированных клеток сверхчувствительных растений происходит в результате выхода фенолов из центральной вакуоли и гидролитических ферментов из лизосом вследствие нарушения целостности клеточных мембран и увеличения их проницаемости. Снижение целостности клеточных мембран обусловлено перекисным окислением липидов. Оно может происходить при участии ферментов и неферментативным путем в результате действия реактивных форм кислорода и свободных органических радикалов.

Одним из характерных свойств сверхчувствительных растений является приобретенная (индуцированная) устойчивость к повторному заражению патогеном. Были предложены термины: системная приобретенная устойчивость (systemic acquired resistance - SAR) и локальная приобретенная устойчивость (localized acquired resistance - LAR). О LAR говорят в тех случаях, когда устойчивость приобретают клетки в зоне, непосредственно примыкающей к локальному некрозу (расстояние примерно 2 мм). В этом случае вторичные некрозы совсем не образуются. Приобретенная устойчивость считается системной, если она развивается в клетках больного растения, удаленных от места первоначального внедрения патогена. SAR проявляется в снижении уровня накопления вирусов в клетках, уменьшении размеров вторичных некрозов, что свидетельствует об угнетении ближнего транспорта вируса. Не ясно, различаются ли между собой LAR и SAR или это один и тот же процесс, происходящий в клетках, расположенных на разном расстоянии от места первичного проникновения вируса в растение.

Приобретенная устойчивость, как правило, неспецифична. Устойчивость растений к вирусам вызывалась бактериальной и грибной инфекциями и наоборот. Устойчивость может индуцироваться не только патогенами, но и различными веществами.

Развитие SAR связано с распространением по растению веществ, образующихся в первично зараженных листьях. Было сделано предположение, что индуктором SAR является салициловая кислота, образующаяся при некротизации первично зараженных клеток.

При заболевании в растениях накапливаются вещества, повышающие их устойчивость к патогенам. Важную роль в неспецифической устойчивости растений играют антибиотические вещества – фитонциды, открытые Б. Токиным в 20-х годах 20 века. К ним относятся низкомолекулярные вещества разнообразного строения (алифатические соединения, хиноны, гликозиды с фенолами, спиртами), способные задерживать развитие или убивать микроорганизмы. Выделяясь при поранении лука, чеснока, летучие фитонциды защищают растение от патогенов уже над поверхностью органов. Нелетучие фитонциды локализованы в покровных тканях и участвуют в создании защитных свойств поверхности. Внутри клеток они могут накапливаться в вакуоли. При повреждениях количество фитонцидов резко возрастает, что предотвращает возможное инфицирование раненых тканей.

К антибиотическим веществам растений относят также фенолы. При повреждениях и заболеваниях в клетках активируется полифенолоксидаза, которая окисляет фенолы до высокотоксичных хинонов. Фенольные соединения убивают патогенны и клетки растения-хозяина, инактивируют экзоферменты патогенов и необходимы для синтеза лигнина.

Среди вирусных ингибиторов обнаружены белки, гликопротеины, полисахариды, РНК, фенольные соединения. Различают ингибиторы заражения, которые влияют непосредственно на вирусные частицы, делая их неинфекционными, или они блокируют рецепторы вирусов. Например, ингибиторы из сока свеклы, петрушки и смородины вызывали почти полное разрушение частиц вируса табачной мозаики, а сок алоэ вызывал линейную агрегацию частиц, что снижало возможность проникновения частиц в клетки. Ингибиторы размножения изменяют клеточный метаболизм, повышая тем самым устойчивость клеток, или угнетают вирусную репродукцию. В устойчивости растений к вирусам участвуют рибосом-инактивирующие белки (RIPs).

В сверхчувствительных растениях табака, пораженных вирусом табачной мозаики, были обнаружены белки, первоначально названные b-белками, а сейчас их обозначают как белки, связанные с патогенезом (PR-белки) или белки, ассоциированные с устойчивостью. Общепринятое название «PR-белки» предполагает, что их синтез индуцируется только патогенами. Однако эти белки образуются и в здоровых растениях при цветении и различных стрессовых воздействиях.

В 1999 году на основе аминокислотной последовательности, серологическим свойствам, энзимной и биологической активности была создана унифицированная для всех растений номенклатура PR-белков, состоящая из 14 семейств (PR-1 – PR-14). Некоторые PR-белки имеют протеазную, рибонуклеазную, 1,3-b-глюканазную, хитиназную активности или являются ингибиторами протеаз. Высшие растения не имеют хитина. Вероятно, что эти белки участвуют в защите растений от грибов, так как хитин и b-1,3-глюканы являются главными компонентами клеточных стенок многих грибов и хитиназа гидролизует b-1,3-связи хитина. Хитиназа может действовать также как лизоцим, гидролизуя пептидоглюканы клеточных стенок бактерий. Однако b-1,3-глюканаза может способствовать транспорту вирусных частиц по листу. Это объясняется тем, что b-1,3-глюканаза разрушает каллозу (b-1,3-глюкан), которая откладывается в клеточной стенке и плазмодесмах и блокирует транспорт вируса.

В состав PR-белков входят также низкомолекулярные (5 кДа) белки – модификаторы клеточных мембран грибов и бактерий: тионины, дефенсины и липидпереносящие белки. Тионины токсичны в условиях in vitro для фитопатогенных грибов и бактерий. Их токсичность обусловлена разрушающим действием на мембраны патогенов. Дефенсины обладают сильными антигрибными свойствами, но не действуют на бактерии. Дефенсины из растений семейств Brassicaceae и Saxifragaceae подавляли рост растяжением гиф грибов, но способствовали их ветвлению. Дефенсины из растений семейств Asteraceae, Fabaceae и Hippocastanaceae замедляли растяжение гиф, но не влияли на их морфологию.

При заражении растений патогенами увеличивается активность литического компартмента клеток чувствительных и сверхчувствительных растений. К литическому компартменту клеток растений относят мелкие вакуоли – производные эндоплазматического ретикулума и аппарата Гольджи, функционирующие как первичные лизосомы животных, то есть содержащие гидролазы структуры, в которых нет субстратов для этих ферментов. Кроме этих вакуолей к литическому компартменту клеток растений относятся центральная вакуоль и другие вакуоли, эквивалентные вторичным лизосомам клеток животных, которые содержат гидролазы и их субстраты, а также плазмалемма и ее производные, в том числе парамуральные тела, и внеклеточные гидролазы, локализованные в клеточной стенке и в пространстве между стенкой и плазмалеммой.

Действие элиситорных препаратов обусловлено наличием в их составе особых биологически активных веществ. По современным представлениям сигнальные вещества или элиситоры - это биологически активные соединения различной природы, которые в очень низких дозировках, измеряемых мили-, микро-, а в отдельных случаях - и нанограммами, вызывают каскады различных ответных реакции растений на генетическом, биохимическом и физиологическом уровнях. Воздействие их на фитопатогенные организмы осуществляется посредством влияния на генетический аппарат клеток и изменения физиологии самого растения, придания ему большей жизнестойкости, сопротивляемости различным негативным факторам среды.

Взаимоотношение растений с окружающим миром, как высокоорганизованных элементов экологических систем, осуществляется путем восприятия физических и химических сигналов, поступающих извне и корректирующих все процессы их жизнедеятельности посредством влияния на генетические структуры, иммунную и гормональную системы. Исследование сигнальных систем растений - это одно из самых многообещающих направлений в современной клеточной и молекулярной биологии. В последние десятилетия учеными достаточно много внимания уделялось изучению сигнальных систем, отвечающих за устойчивость растений к фитопатогенам .

Биохимические процессы, происходящие в клетках растений, строго скоординированы целостностью организма, которая дополняется их адекватными реакциями на потоки информации, связанные с различными воздействиями биогенных и техногенных факторов. Эта координация осуществляется за счет работы сигнальных цепей (систем), которые сплетаются в сигнальные сети клеток. Сигнальные молекулы включают в работу большинство гормонов, как правило, не проникая внутрь клетки, а взаимодействуя с молекулами-рецепторами внешних клеточных мембран. Эти молекулы представляют собой интегральные мембранные белки, полипептидная цепь которых пронизывает толщу мембраны. Разнообразные молекулы, инициирующие трансмембранную передачу сигналов, активируют рецепторы в нано-концентрациях (10-9-10-7 М). Активированный рецептор передает сигнал внутриклеточным мишеням - белкам, ферментам. При этом модулируется их каталитическая активность или проводимость ионных каналов. В ответ на это формируется определенный клеточный ответ, который, как правило, заключается в каскаде последовательных биохимических реакций. Помимо белковых посредников в передаче сигналов могут участвовать и относительно небольшие молекулы-мессенджеры, функционально являющиеся посредниками между рецепторами и клеточным ответом. Примером внутриклеточного мессенджера является салициловая кислота, участвующая в индукции стрессовых и иммунных реакций растений. После выключения сигнальной системы мессенджеры быстро расщепляются или (в случае катионов Са) откачиваются через ионные каналы. Таким образом, белки образуют своеобразную «молекулярную машину», которая, с одной стороны, воспринимает внешний сигнал, с другой, - обладает ферментной или иной активностью, моделируемой этим сигналом .

В многоклеточных растительных организмах передача сигнала осуществляется через уровень общения клеток. Клетки «разговаривают» на языке химических сигналов, что позволяет осуществлять гомеостаз растения как целостной биологической системы. Геном и сигнальные системы клеток образуют сложную самоорганизующуюся систему или своеобразный «биокомпьютер». Жестким носителем информации в нем является геном, а сигнальные системы играют роль молекулярного процессора, выполняющего функции оперативного управления. В настоящее время мы располагаем только самыми общими сведениями о принципах работы данного чрезвычайно сложного биологического образования. Во многом остаются еще невыясненными молекулярные механизмы сигнальных систем. Среди решения многих вопросов предстоит расшифровка механизмов, обусловливающих временный (преходящий) характер включения тех или иных сигнальных систем, и в то же время, длительную память об их включении, проявляющуюся, в частности, в приобретении системного пролонгированного иммунитета .

Между сигнальными системами и геномом существует двусторонняя связь: с одной стороны, ферменты и белки сигнальных систем закодированы в геноме, с другой - сигнальные системы управляются геномом, экспрессируя одни и супрессируя другие гены. Этот механизм включает рецепцию, преобразование, умножение и передачу сигнала на промоторные участки генов, программирование экспрессии генов, изменение спектра синтезируемых белков и функциональный ответ клетки, например, индукцию иммунитета к фитопатогенам .

В качестве сигнальных молекул или элиситоров, проявляющих индукционную активность, могут выступать различные органические соединения-лиганды и их комплексы: аминокислоты, олигосахариды, полиамины, фенолы, карбоновые кислоты и эфиры высших жирных кислот (арахидоновая, эйкозапентаеновая, олеиновая, жасмоновая и др.), гетероциклические и элементоорганические соединения, в том числе некоторые пестициды и др. .

К вторичным элиситорам, образующимся в клетках растений при действии биогенных и абиогенных стрессоров и включающимся в сигнальные сети клеток, относят фитогормоны: этилен, абсцизовую, жасмоновую, салициловую кислоты, а

также полипептид системин и некоторые другие соединения, которые вызываютэкспрессию защитных генов, синтез соответствующих белков, образование фитоалексинов (специфические вещества, обладающие антимикробным действием и вызывающие гибель патогенных организмов и пораженных клеток растений) и, в конечном итоге, способствуют формированию системной устойчивости у растений к негативным факторам среды .

В настоящее время наиболее изучены семь сигнальных систем клеток: циклоаденилатная, MAP-киназная (mitogen-activated protein-kinase), фосфатидокислотная, кальциевая, липоксигеназная, НАДФН-оксидазная (супероксидсинтазная), NO-синтазная. Ученые продолжают открывать новые сигнальные системы и их биохимических участников .

Растения в ответ на атаку патогенов могут использовать различные пути формирования системной устойчивости, которые запускаются разными сигнальными молекулами. Каждый из элиситоров, воздействуя на жизнедеятельность растительной клетки по определенному сигнальному пути, через генетический аппарат, вызывает широкий комплекс реакций, как защитного (иммунного), так и гормонального характера, приводящих к изменению свойств самих растений, что позволяет им противостоять целому комплексу стрессовых факторов. При этом в растениях осуществляется ингибирующее или синергирующее взаимодействие различных сигнальных путей, сплетающихся в сигнальные сети .

Индуцированная устойчивость по проявлению сходна с генетически обусловленной горизонтальной устойчивостью, с той лишь разницей, что характер ее определяется фенотипическими изменениями генома. Тем не менее, она обладает определенной стабильностью и служит примером фенотипической иммунокоррекции растительной ткани, поскольку в результате обработки веществами элиситорного действия изменяется не геном растений, а лишь его функционирование, связанное с уровнем активности защитных генов .

Определенным образом эффекты, возникающие при обработке растений иммуноиндукторами, родственны генной модификации, отличаясь от нее отсутствием количественных и качественных изменений самого генофонда. При искусственной индукции иммунных реакций наблюдаются только фенотипические проявления, характеризующиеся изменениями активности экспрессированных генов и характера их функционирования . Тем не менее, вызванные обработкой фитоактиваторами растений изменения обладают определенной степенью стойкости, что проявляется в индукции пролонгированного системного иммунитета, поддерживающегося в течение 2-3 и более месяцев, а также в сохранении приобретенных свойств растениями в течение 1-2 последующих репродукций .

Характер действия определенного элиситора и достигаемые эффекты находятся в самой тесной зависимости от силы формируемого сигнала или используемой дозировки. Данные зависимости, как правило, имеют не прямолинейный, а синусоидальный характер, что может служить доказательством переключения сигнальных путей при их ингибирующих или синергирующих взаимодействиях .Установлено также, что в условиях действия стрессовых факторов растения положительно реагируют на более низкие дозировки фитоактиваторов, что свидетельствует о более высокой выраженности их адаптогенного действия. Напротив, обработка данными веществами в больших дозировках, как правило, вызывала десенсибилизационные процессы в растениях, резко снижая иммунный статус растений и приводя к усилению восприимчивости растений к заболеваниям .

Президиум Российской академии наук
ПРИСУДИЛ
премию имени А.Н.Баха 2002 года
академику Игорю Анатольевичу ТАРЧЕВСКОМУ
за цикл работ «Сигнальные системы клеток растений»

Академик И.А. ТАРЧЕВСКИЙ
(Казанский Институт биохимии и биофизики КНЦ РАН, Институт биохимии им.А.Н.Баха РАН)

СИГНАЛЬНЫЕ СИСТЕМЫ КЛЕТОК РАСТЕНИЙ

И.А.Тарчевский в течение почти 40 лет исследует влияние абиотических и биотических стрессоров на метаболизм растений. Последние 12 лет наибольшее внимание уделяется одному из наиболее перспективных направлений современной биохимии и физиологии растений — роли сигнальных систем клеток в формировании состояния стресса. По этой проблеме И.А.Тарчевским было опубликовано 3 монографии: «Катаболизм и стресс у растений» , «Метаболизм растений при стрессе» , и «Сигнальные системы клеток растений» . В 30 статьях И.А.Тарчевским и соавторами опубликованы результаты исследований аденилатциклазной , кальциевой , липоксигеназной и НАДФН- оксидазной сигнальных систем клеток растений. Исследуется NО-синтазная сигнальная система .

Анализ особенностей катаболизма растений при стрессе позволил сделать вывод о сигнальной функции «обломков кораблекрушения» — олигомерных продуктов деградации биополимеров и «фрагментов» фосфолипидов . Сделанное в этой работе предположение об элиситорных (сигнальных) свойствах продуктов деградации кутина позднее было подтверждено зарубежными авторами .

Публиковались не только работы экспериментального характера, но и обзоры, в которых подводились итоги исследований сигнальных систем клеток растений отечественными и зарубежными авторами .

Начатые в лаборатории автора А.Н.Гречкиным и затем продолженные им в самостоятельной лаборатории исследования липидного метаболизма позволили получить результаты приоритетного характера, значительно расширившие представления о липоксигеназном сигнальном каскаде. Изучение влияния интермедиата НАДФН-оксидазной системы — салициловой кислоты на синтез белков привело к выводу о причине давно установленной биологической активности другого соединения — янтарной кислоты. Оказалось, что последняя является миметиком салицилата и обработка ею растений «включает» сигнальные системы, что приводит к синтезу салицилат-индуцируемых защитных белков и повышению устойчивости к патогенам .

Было обнаружено, что различные экзогенные стрессовые фитогормоны — жасмоновая, салициловая и абсцизовая кислоты вызывают индукцию синтеза как одних и тех же белков (что свидетельствует о «включении» этими гормонами одних и тех же сигнальных путей), так и специфичных для каждого из них белков (что указывает на одновременное «включение» и различающихся сигнальных каскадов) .
Впервые в мировой литературе И.А.Тарчевским был проведен анализ функционирования в растениях всех известных сигнальных систем клеток и возможностей их взаимовлияния, что привело к представлению о существовании в клетках не изолированных сигнальных систем, а о сигнальной сети, состоящей из взаимодействующих систем .

Была предложена классификация патоген-индуцируемых белков по функциональному признаку и сделан обзор особенностей синтеза «включаемого» различными сигнальными системами синтеза этих белков . Одни из них являются участниками сигнальных систем растений, и их интенсивное образование обеспечивает усиление восприятия, преобразования и передачи в генетический аппарат элиситорных сигналов, другие ограничивают питание патогенов, третьи катализируют образование фитоалексинов, четвертые — реакции укрепления клеточных стенок растений, пятые вызывают апоптоз инфицированных клеток. Функционирование всех этих патоген-индуцированных белков существенно ограничивает распространение инфекции по растению. Шестая группа белков может непосредственно действовать на структуру и функции патогенов, прекращая или подавляя их развитие. Некоторые из этих белков вызывают деградацию клеточной стенки грибов и бактерий, другие дезорганизуют функционирование их клеточной мембраны, изменяя ее проницаемость для ионов, третьи подавляют работу белок-синтезирующей машины, блокируя синтез белков на рибосомах грибов и бактерий или действуя на вирусную РНК.

Наконец, впервые был подведен итог работам по конструированию устойчивых к патогенам трансгенных растений, причем в основу этой обзорной работы была положена упомянутая выше классификация патоген-индуцируемых защитных белков , Особое внимание уделено результатам исследования с помощью трансгенных растений особенностей функционирования сигнальных систем клеток.

Исследования сигнальных систем клеток растений имеет не только большую теоретическую важность (так как они составляют основу молекулярных механизмов стресса), но и большое практическое значение, поскольку позволяют создавать эффективные антипатогенные препараты на основе природных элиситоров и интермедиатов сигнальных систем.

Различным аспектам функционирования сигнальных систем клеток растений были посвящены Тимирязевская, Костычевская и Сисакяновская лекции И.А.Тарчевского (последняя в соавторстве с А.Н.Гречкиным), а также выступления на Международных конференциях (в Венгрии, Англии, Франции, Польше, Турции, Израиле, Индии, Германии и др.).

За исследования одной из сигнальных систем — липоксигеназной, И.А.Тарчевский и чл.-корр.РАН А.Н.Гречкин в 1999 году были удостоены премии имени В.А.Энгельгардта Академии наук Республики Татарстан.

Во многих публикациях И. А.Тарчевского принимали участие в качестве соавторов его коллеги — член-корреспондент РАН А.Н.Гречкин, доктора биологических наук Ф.Г.Каримова, Н.Н.Максютова, В.М.Чернов, О.А.Чернова и кандидат биологических наук В.Г.Яковлева.

В 2001 году по инициативе И.А.Тарчевского и при его участии в качестве председателя Оргкомитета в Москве был проведен Международный симпозиум по сигнальным системам клеток растений.

ЛИТЕРАТУРА

1. Тарчевский И.А. Катаболизм и стресс у растений. Наука. М. 1993. 83 c.
2. Тарчевский И.А. Метаболизм растений при стрессе. Избранные труды. Изд.»Фэн» (Наука). Казань. 2001. 448 с.
3. Тарчевский И.А.Сигнальные системы клеток растений. М.: Наука, 2002. 16,5 п.л. (в печати).
4. Максютова Н.Н., Викторова Л.В., Тарчевский И.А. Действие АТФ и ц-АМФ на синтез белков зерновок пшеницы. // Физиол. биохим. культур. растений. 1989. Т. 21. № 6. С.582-586.
5. Grechkin A.N., Gafarova T.E., Korolev O.S., Kuramshin R.A., Tarchevsky I.A. The monooxygenase pathway of linoleic acid oxidation in pea seedlings. / In: «Biological Role of Plant Lipids». Budapest: Akad. Kiado. New York, London. Plenum. 1989. P.83-85.
6. Tarchevsky I.A., Grechkin A.N. Perspectives of search for eicosаnoid analogs in plants. / In: «Biological Role of Plant Lipids». Budapest: Akad. Kiado. New York, London. Plenum. 1989. P.45-49.
7. Гречкин А.Н., Кухтина Н.В., Курамшин Р.А., Сафонова Е.Ю., Ефремов Ю.Я., Тарчевский И.А. Метаболизация коронаровой и верноловой кислот в гомогенате эпикотилей гороха. // Биоорган. химия. 1990. Т.16. N 3. С. 413-418.
8. Grechkin A.N., Gafarova T.E., Tarchevsky I.A. Biosynthesis of 13-oxo-9(Z), 11(E)-tridecadienoic acid in pea leaf homogenate. / In: «Plant Lipid Biochemistry. Structure and Utilization». London. Portland Press. 1990. P. 304-306.
9. Grechkin A.N., Kuramshin R.A., Tarchevsky I.A. Minor isomer of 12-oxo-10,15-phytodienoic acid and the mechanism of natural cyclopentenones formation. / In: «Plant Lipid Biochemistry. Structure and Utilization». London. Portland Press. 1990. P.301-303.
10. Tarchevsky I.A., Kuramshin R.A., Grechkin A.N. Conversation of α-linolenate into conjugated trienes and oxotrienes by potato tuber lipoxygenase. / In: «Plant Lipid Biochemistry. Structure and Utilization». London. Portland Press. 1990. P. 298-300.
11. Гречкин А.Н., Курамшин Р.А., Тарчевский И.А. Образование нового α-кетола гидропероксид-дегидразой из семян льна. // Биоорган. химия. 1991. Т. 17. № 7. С. 997-998.
12. Grechkin A.N., Kuramshin R.A, Safonova E.Y., Yefremov Y.J., Latypov S.K., Ilyasov A.V., Tarchevsky I.A. Double hydroperoxidation of linolenic acid by potato tuber lipoxygenase. // Biochim. Biophys. Acta. 1991. V. 1081. N 1. P. 79-84.
13. Тарчевский И.А. Регуляторная роль деградации биополимеров и липидов. // Физиол. растений. 1992. Т. 39. N 6. С.156-164.
14. Тарчевский И.А., Максютова Н.Н., Яковлева В.Г. Влияние салициловой кислоты на синтез белков проростков гороха. // Физиология растений. 1996. Т.43. N 5. С. 667-670.
15. Тарчевский И.А., Максютова Н.Н., Яковлева В.Г., Чернов В.М. Микоплазма-индуцированные и жасмонат-индуцированные белки растений гороха. // Доклады РАН. 1996. Т. 350. N 4. С. 544 — 545.
16. Чернов В.М., Чернова О.А.,Тарчевский И.А. Феноменология микоплаз-менных инфекций у растений. // Физиол. растений. 1996. Т. 43. N.5. С. 721 — 728.
17. Тарчевский И.А. О вероятных причинах активирующего действия янтарной кислоты на растения./ В кн.»Янтарная кислота в медицине, пищевой промышленности, сельском хозяйстве». Пущино. 1997. С.217-219.
18. Гречкин А.Н., Тарчевский И.А. Липоксигеназная сигнальная система. // Физиол. растений. 1999. Т. 46. № 1. С. 132-142.
19. Каримова Ф.Г., Корчуганова Е.Е., Тарчевский И.А., Абубакирова М. Р. Na+/Ca+ -обмен в клетках растений. // Доклады РАН. 1999. Т.366. № 6. С. 843-845.
20. Каримова Ф.Г., Тарчевский И.А., Мурсалимова Н.У., Гречкин А.Н. Влияние продукта липоксигеназного метаболизма -12-гидроксидодеценовой кислоты на фосфорилирование белков растений. // Физиол. растений. 1999. Т.46. №1. С.148-152.
21. Тарчевский И.А. Взаимодействие сигнальных систем клеток растений, «включаемых» олигосахаридами и другими элиситорами. // «Новые перспективы в исследовании хитина и хитозана». Материалы Пятой конференции. М. Изд-во ВНИРО. 1999. С.105-107.
22. Тарчевский И.А., Гречкин А.Н., Каримова Ф.Г., Корчуганова Е.Е., Максютова Н.Н., Мухтарова Л.Ш., Яковлева В.Г., Фазлиев Ф.Н., Ягушева М.Р., Палих Э., Хохлова Л.П. О возможности участия циклоаденилатной и липоксигеназной сигнальных систем в адаптации растений пшеницы к низким температурам. / В кн. «Грани сотрудничества. К 10-летию Соглашения о сотрудничестве между Казанским и Гиссенским университетами». Казань: УНИПРЕСС, 1999. С.299-309.
23. Тарчевский И.А, Максютова Н.Н., Яковлева В.Г., Гречкин А.Н. Янтарная кислота — миметик салициловой кислоты. // Физиол. растений. 1999. Т. 46. № 1. С. 23-28.
24. Гречкин А.Н., Тарчевский И.А. Липоксигеназный сигнальный каскад растений. // Научный Татарстан. 2000. № 2. С. 28-31.
25. Гречкин А.Н., Тарчевский И.А. Сигнальные системы клеток и геном. // Биоорганическая химия. 2000. Т. 26. № 10. С. 779-781.
26. Тарчевский И.А. Элиситор-индуцируемые сигнальные системы и их взаимодействие. // Физиол. растений. 2000. Т.47.№ 2. С.321-331.
27. Тарчевский И.А., Чернов В.М. Молекулярные аспекты фитоиммунитета. // Микология и фитопатология. 2000. Т. 34. № 3. С. 1-10.
28. Karimova F., Kortchouganova E., Tarchevsky I., Lagoucheva M. The oppositely directed Ca+2 and Na+ transmembrane transport in algal cells. // Protoplasma. 2000. V. 213. P. 93-98.
29. Tarchevsky I.A., Karimova F.G., Grechkin A.N. and Moukhametchina N.M. Influence of (9Z)-12-hydroxy-9-dodecenoic acid and methyl jasmonate on plant protein phosphorylation. // Biochemical Society Transactions. 2000. V. 28. N. 6. P. 872-873.
30. Тарчевский И.А. Патоген-индуцируемые белки растений. // Прикладная микробиология и биохимия. 2001. Т. 37. № 5. С. 1-15.
31. Тарчевский И.А., Максютова Н.Н., Яковлева В.Г. Влияние салицилата, жасмоната и АБК на синтез белков. // Биохимия. 2001. Т. 66. N. 1. С. 87-91.
32. Yakovleva V.G., Tarchevsky I.A., Maksyutova N.N. Influence of NO donor nitroprusside on protein synthesis in pea seedlings. // Abstracts of International Symposium «Plant Under Environmental Stress». Moscow. Publishing House of Peoples’ Friendship University of Russia. 2001. P. 318-319.
33. Yakovleva V.G., Maksyutova N.N., Tarchevsky I.A., Abdullaeva A.R. Influence of donor and inhibitor of NO-synthase on protein synthesis of pea seedlings. // Abstracts of International Symposium «Signalling systems of plant cells». Moscow, Russia, 2001, June, 5-7. ONTI, Pushchino. 2001. P. 59.