Приборы для поиска пустот. Схема прибора для обнаружения металлических предметов

Для поиска тайников в строительных конструкциях из кирпича и бетона при одностороннем доступе предназначен прибор "Кайма".

Принцип действия прибора основан на регистрации частично отраженной от границ раздела двух сред радиоволны, излучаемой передающей антенной. В приемном устройстве, состоящем из приемной антенны и усилителя, отраженный сигнал обрабатывается и передается на звуковой и стрелочный индикаторы.

Прибор состоит из блока обработки и связанного с ним датчика. Массаприбора составляет не более 1,6 кг.

Дальность обнаружения внутренних полостей в зависимости от их размера составляет до 250 мм. При этом не имеет значения степень заполнения полости различными вложениями.

Скорость сканирования при работе с прибором должна составлять от 5 до 15 см/с. Датчик во время поиска должен плотно и без перекосов прилегать к стене.

Другим прибором, обеспечивающим обнаружение тайников, является прибор "Жасмин", в комплект которого дополнительно входит устройство для сверления и эндоскоп для осмотра содержимого полости.

В приборе используется импульсный метод зондирования и регистрируется сигнал, отраженный от стенок тайников, который задерживается по времени относительно зондирующего импульса. Путем измерения времени задержки можно оценить расстояние до источника сигнала.

Прибор "Жасмин" предпочтительно использовать для больших по габаритам и глубине залегания тайников. С его помощью можно обнаруживать внутренние полости: в глиняных и песчаных грунтах - на глубине до 500 мм; в кирпичных стенах - на глубине до 400 мм; в бетонных стенах - на глубине до 200 мм.

Приборы для поиска и идентификации взрывчатых

И наркотических веществ

Все взрывчатые вещества (ВВ) имеют специфический запах. Одни, как, например, нитроглицерин пахнут очень сильно, другие, как тротил, - значительно слабее, а некоторые, в частности, пластиды - очень слабо. Тем не менее, все эти ВВ обнаруживают, по крайней мере, с использованием служебно-розыскных собак.

Современные газоанализаторы , являющиеся своеобразной моделью “собачьего носа”, тоже могут делать это, правда не столь эффективно в отношении пластидов.

Отечественные газоанализаторы типа МО2 по своим эксплуатационным характеристикам не уступают лучшим зарубежным образцам. Реализуемая на практике их чувствительность (порядка 10 -13...-14 г/см 3 по ТНТ) позволяет надежно фиксировать штатные ВВ типа тротила, гексогена и др. Правда, все подобные приборы достаточно дорогостоящие.

Принцип действия таких приборов основан на методах газовой хроматографии и дрейфспектрометрии ионов.

Хроматографические детекторы паров взрывчатых и наркотических веществ требуют применения высокочистых газов-носителей (аргон, азот), что создает определенные неудобства в процессе эксплуатации этих приборов. Оригинально решена эта проблема в детекторе Egis фирмы Thermedics (США): газ-носитель водород получается в самом приборе путем электрохимического разложения воды.

В дрейфспектрометрических детекторах основу газа-носителя составляет воздух.

Важным технологическим звеном в процессе обнаружения взрывчатых и наркотических веществ является пробоотбор. Пробоотборник - это, в сущности, малогабаритный пылесос, который задерживает пары и частицы веществ на сорбирующих поверхностях или в фильтре (концентратор). Бумажный фильтр можно использовать и для взятия мазков с поверхности контролируемого предмета. Затем, в процессе нагрева происходит десорбция веществ из концентратора и парообразная фракция подвергается анализу.

Достаточно трудной задачей является обнаружение слаболетучих взрывчатых веществ, входящих в состав пластиковой взрывчатки, однако приборы последнего поколения успешно справляются и с ней.

Следует отметить, что в сочетании с газоанализатором целесообразно использовать сравнительно недорогой химический комплект для экспресс-анализа следовых количеств взрывчатых и наркотических веществ.

Анализаторы следов ВВ относятся к классу сравнительно недорогих средств для экспресс-выявления следов взрывчатых веществ на поверхности предметов. Используется принцип так называемой жидкостной хроматографии.

Следы ВВ изменяют окраску действующего на них химического реагента. Устройство компактно, просто в обращении. Реализованная на практике чувствительность порядка 10 -8...-9 г/см 3 по ТНТ и 10 -6...-7 г/см 3 по гексогену, оксогену и тетрилу. Средство незаменимо в полевых условиях.

Ядерно-физические приборы - сложные и сравнительно дорогие устройства, позволяющие выявить ВВ по наличию в них водорода и азота, способны обнаружить ВВ в разнообразных условиях, в том числе и за преградой.

Наибольший пользовательский интерес представляют нейтронные дефектоскопы . Они выявляют ВВ как объект с повышенным содержанием водорода. Для этого используется слабый источник нейтронов, которые, попадая на ВВ, рассеиваются на атомах водорода и регистрируются приемником. Отечественные нейтронные дефектоскопы типа “Исток-Н” имеют высокую производительность и конструктивно реализованы в портативном варианте.

Одним из наиболее ярких представителей приборов обнаружения и идентификации наркотических и взрывчатых веществ (НВ и ВВ) является прибор ITEMIZER , изготовленный фирмой Ion Track Instrument (Великобритания) и успешно применяемый в Калининградской региональной таможенной лаборатории для проведения экспертиз НВ и ВВ, а также в Калининградской оперативной таможне для проведения скрытых оперативных мероприятий.

С помощью данного прибора можно успешно проводить проверку и поиск следов НВ и ВВ, которые в случае их присутствия неизбежно имеются на поверхностях багажа, автомобилей, транспортных упаковок и контейнеров. Любая поверхность, с которой соприкасался контрабандный товар, может быть проверена.

Прибор в течение 30 секунд переключается из режима обнаружения НВ на режим обнаружения ВВ. Анализатор, встроенный сенсорный экран, принтер и блок испарения-десорбции собраны в одном корпусе и образуют легко транспортируемый прибор небольшого веса. Органы управления и визуального контроля выведены на панель сенсорного экрана.

В случае обнаружения контрабанды на экране мигает сигнал тревоги, вещество идентифицируется, раздается звуковой сигнал и все полученные результаты печатаются на специальной ленте встроенным принтером с указанием даты и времени.

Отбор пробы производится путем протирки исследуемой поверхности бумажным фильтром или при помощи блока дистанционного взятия проб (автономного ручного микропылесоса, в который вставляется бумажный фильтр). В каждом случае фильтр с пробой помещается в блок испарения-десорбции для проведения автоматического анализа. Присутствие или отсутствие контрабанды прибор подтверждает в течение 8 секунд, что позволяет обрабатывать достаточно большое количество проб ежесуточно.

Архив (библиотека) компьютера прибора включает в себя программу идентификации до 40 типов НВ и ВВ, а также может подвергаться изменению и дополнению. Кроме того, в результате сравнения плазмограмм одного и того же вещества, имеется возможность определения места производства исследуемого вещества, при условии наличия архивных данных по данному веществу.

Основные технические параметры прибора ITEMIZER:

1. Чувствительность: не более 200 пикограмм НВ и ВВ.

2. Вероятность ложной тревоги при взятии проб:

С поверхности - 1%;

С воздуха - 0,1%.

3. Время подготовки к работе - до 50 минут.

4. Электропитание: 220 В, 50 Гц.

Для проведения досмотрово-поисковых мероприятий целесообразно использовать портативный переносной аналог данного прибора - VaporTracer. Основанный на технологии спектрометрии мобильности захваченных ионов, этот ручной детектор разработан для использования в местах. где требуется повышенная безопасность, где необходимо проводить быстрый и точный досмотр. Оператор направляет сопло детектора на досматриваемый объект и нажимает активатор. Проба моментально попадает в детектор и анализируется. Весь процесс занимает несколько секунд.

Прибор весит менее 4 кг и способен обнаруживать и идентифицировать крайне малое количество НВ и ВВ. Система работает, забирая пробу пара в детектор, где она нагревается, ионизируется, а затем идентифицируется, показывая результаты на уникальной плазмограмме.

Данный прибор способен обнаруживать как пары, так и частицы контрабанды НВ и ВВ.

Технические характеристики прибора VaporTracer:

1. Обнаруживаемые вещества: более 40 НВ и ВВ одновременно;

2. Источники питания: от сети 220 В или от аккумуляторной батареи (до 6 часов работы);

3. При обнаружении НВ или ВВ срабатывают как визуальный, так и звуковой сигнал тревоги.

В органах внутренних делдля поиска ВВ используютхроматограф газовый "Эхо-М".

Процесс исследования сорбированных проб состоит из двух самостоятельных стадий: отбор пробы и ее газохроматографический анализ.

При отборе пробы поток анализируемого воздуха прокачивается через концентратор. Вследствие повышенной сорбируемости пары низколетучих веществ улавливаются концентратором и удерживаются на его поверхности. Для проведения газохроматографического анализа концентратор с пробой помещают в камеру ввода прибора, в которой поддерживается температура, достаточная для испарения веществ с поверхности концентратора. После определенного времени подогрева концентратора через камеру продувается порция прогретого газа - носителя, которая переносит парогазовую смесь с анализируемой пробой в разделительную газохроматографическую колонку.

1) Название проекта:

Приборы для обнаружения пустот, подземных ходов, захоронений, полиэтиленовых газопроводов и немагнитных боеприпасов .

2) Краткое описание проекта:

Актуальность данной тематики заключается в том, что в настоящее время нет портативных и надежных приборов позволяющих определить существующими методами расположение аномалий грунта, и по характеру аномалий производить обнаружения пустот, подземных ходов и захоронений . Поиск и обнаружение биологических останков в настоящее время является не решенной мировой проблемой. В настоящее время отечественные и импортные радиоволновые миноискатели могут только обнаружить неметаллический предмет , т. е. нет селекции немагнитных мин от камней и предметов близкого размера . Также имеется острая необходимость для армии и спецслужб в обнаружении тонкого не запитанного кабеля при разминировании (от фугаса до радиовзрывателя), такие приборы в настоящее время в нашей стране и за рубежом отсутствуют.

В период 1990...2010 г. были разработаны и опробованы ряд модификаций приборов ИГА-1 для измерения сверхслабых электромагнитных полей естественного поля Земли и искажений этих полей вносимых от поглощения и переизлучения различными объектами. Приборы, представляют из себя селективные приемники электромагнитных полей в диапазоне 5...10 кгц, с вычислением интеграла фазового сдвига на измеряемой частоте (http:// www. *****). Принцип действия прибора ИГА-1 похож на радиоволновые миноискатели, только нет излучателя, которым является естественный фон Земли и более низкий диапазон частот. ИГА-1 фиксирует искажение электромагнитного поля в местах неоднородностей грунта при наличии под землей каких либо предметов, и предназначен для поиска неметаллических предметов, пустот, водяных жил, трубопроводов, человеческих останков по изменению фазового сдвига на границе перехода сред. В качестве выходного параметра прибора используется интеграл фазового сдвига на частоте приема, величина которого изменяется на границе перехода сред (грунт-труба, грунт-пустота). Прибор выполнен в виде переносного измерительного датчика с визуальной индикацией. Питание прибора осуществляется от аккумулятора. Вес всей аппаратуры в чемодане не превышает 5 кг, вес измерительного датчика не более 1 кг.


3) Характер проекта:

Расширение действующего производства

Выполнение НИОКР

Продажа лицензий на производство новых вариантов приборов другим производителям.

4) Отрасль применения:

· Высокие технологии, наукоемкие технологии

6) Объем требуемых инвестиций, в рублях

100 млн. руб

7) Срок окупаемости, лет

8) Период реализации проекта, лет

9) Форма сотрудничества:

· Акционерный капитал

· Долевое участие

10) Степень готовности проекта

Фирмой "Лайт-2" с 1994 г организовано производство приборов ИГА-1 на базе оборонных предприятий, выпущено более 300 приборов, которые используются в России и за рубежом. Варианты приборов ИГА-1 для обнаружения водных жил отработаны и не требуют дополнительных инвестиций. Обнаружение полиэтиленовых газопроводов отработано в ручном(не автоматизированном) режиме и предполагает работу хорошо обученного оператора.

Требуется модернизация и дальнейшая отработка приборов ИГА-1 для обнаружения пустот, подземных ходов, захоронений и немагнитных боеприпасов, полиэтиленовых газопроводов согласно полученных патентов на изобретения:

Патент РФ N 2119680 от 01.01.2001 г. Способ геоэлектромагнитной разведки и устройство для его реализации. , и др.

Патент РФ № 000 от 01.01.2001 г. Способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления. , и др.

Патент РФ № 000 от 01.01.01 г. «Устройство для поиска и идентификации пластиковых мин», и др.

Патент РФ № 000 от 01.01.01 г."Устройство для поиска подземных трубопроводов", и др.

По поиску человеческих останков прибор ИГА-1 впервые прошел апробацию в поселке Нефтегорск (1995 г.), после землетрясения было найдено около 30 погибших. Отзыв главы администрации поселка Нефтегорск на сайте http:// www. ***** . В Екатеринбурге (1996 г) по линии МВД проведена работа по обнаружению трупов замурованных в автодорогу «Сибирский тракт» и захоронений в лесу в районе Нижнеисетского кладбища. Справки из уголовного дела № 000. г. Екатеринбург, 1996 г. на сайте http:// www. ***** .

В гг. с помощью прибора ИГА-1 удалось обнаружить могилы 100-150 летней давности при рестоврации и восстановлдении храмов: Георгиевского монастыря «Святые Кустики» Благовещенского района Башкирии, храма «Святой Троицы» села Красный Яр в Башкортостане (http:// www. *****), а также и и других храмов Башкортостана и Татарстана .

В 2008 году по просьбе жителя г. Туймазы были произведены поиски заброшенной могилы его отца Ивана Безымянникова, участника войны, бывшего секретаря райкома. Могила находилась в городском парке, после реконструкции парка в 1991 г. следы захоронения были потеряны. После раскопок было произведено перезахоронение останков на городском кладбище. Фотографии на сайте http:// www. *****.
При проведении поисковых исследований (2003 г.) в районе боев 1-й отдельной горно-стрелковой бригады в период Великой Отечественной войны, в Кировском районе Ленинградской области с помощью прибора ИГА-1 было опробована возможность обнаружения засыпанных окопов, блиндажей и захоронений, а также боеприпасов. Было установлено, что прибор ИГА-1 реагирует на боеприпасы и металлические предметы аналогично миноискателю ИПМ. Для обнаружения пустот и захоронений, вначале необходимо обнаружить и убрать весь металл с исследуемого места, затем производится обнаружение пустот и захоронений. Для селективной избирательности (только пустоты или человеческие останки) необходимо проводить дальнейшую модернизацию и совершенствование прибора ИГА-1


По поводу применения приборов ИГА-1 для инженерно-саперных целей была переписка с Советом безопасности РФ и Минобороной - направление по обнаружению не магнитных мин. Данное изобретение рассматривалось Комиссией по научно-техническим вопросам Совета безопасности РФ (1995 г,), в отделе изобретательства Минобороны (), в/ч 52684-А (Исх.565/ 2139 от 3.12.1996 г.), ЦНИИ 15 МО (исх 1131 от 1.09.1998 г.). Летом 2000 г. экспериментальный образец прибора ИГА-1 в варианте миноискателя проходил испытания в ЦНИИ 15 МО на предмет возможности обнаружения противотанковых, противопехотных немагнитных мин и залегающих на большой глубине неразорвавшихся фугасов, получен положительный отзыв (http:// www. *****),. Отмечены также и недостатки, для их устранения требуется дальнейшая доводка аппаратуры, которая требует дополнительных инвестиций. Учитывая, то, что существующие в мире миноискатели не магнитных мин не отличают их от камней близкого размера, дальнейшее развитие нашего метода позволит проводить такую селекцию по частоте приема путем снятия спектральных характеристик обнаруженных предметов. Для определения возможности фиксации не запитанных кабелей при разминировании (от фугаса до радиовзрывателя) один из приборов ИГА-1 был настроен под эту задачу и проведено опробование на берегу р. Белой в Уфе, в месте где больше нет ни каких коммуникаций, в результате получено подтверждение о возможности использования ИГА-1 для этих задач.

По обнаружению подземных ходов, в которых могут скрываться террористы, к прибору ИГА-1 был большой интерес у западных военных специалистов на выставке российских разработок и оборудования для разминирования местности и утилизации боеприпасов, которая проводилась 29-30 апреля 2002 г. в г. Москва на предприятии «Базальт». Несколько приборов ИГА-1 были проданы организациям и кладоискателям под эти задачи и успешно используются.

· Исследования и разработки

· Закупка оборудования

· Внедрение новых технологий

12) Имеется поддержка органами власти

На данный момент финансовой поддержки нет

13) наличие подготовленного бизнес-плана

В стадии разработки

14) Финансовое обеспечение проекта:

· Собственные средства в настоящий момент отсутствуют.

· Государственное финансирование отсутствует.

· Ранее привлеченные собственные средства с 1994 г. 10 млн руб. в современном исчислении

· Недостающие средства 100 млн руб. на 5 лет.

15) Предоставление прав инвестору:

· Приобретение акций 48 %

· Доли от объема полученной прибыли при продаже лицензий на производство новых отработанных вариантов приборов 50 %

16) Контактная информация:

Адрес контактного лица: г. Уфа, ул. К. Маркса 65\1 кв 74

E-mail контактного лица: *****@***ru

Контактное лицо:

Телефоны контактного лица: 0-69

17) Владелец проекта (выберите только один вариант в зависимости от владельца проекта)

Электрические помехи приводят к нестабильной работе телевизоров, радиоприемников, электрокардиографов и других устройств. На выявление источника электрических помех затрачивается много времени.

Для оперативного обнаружения источников индустриальных электрических помех можно использовать портативный радиоакустический прибор.

Принцип работы прибора основан иа регистрации радиочастотного спектра искрового разряда при «дальнем» (до 200 м) поиске и «ближнем» (до 7 м) — акустического спектра частот искрового разряда. При этом диаграмма направленности акустического датчика составляет 10—12 градусов. Место искрового разряда определяется с точностью ± 5 см. Прибор может применяться для отыскания мест «тихих» коронарных разрядов, а также для определения мест электрических разрядов.

Схема прибора изображена рис. 75, а.

І — радиодатчик, состоящий из магнитной антенны, настроенной на частоту 40 кГц; 2 — акустический датчик, состоящий из пьезоэлектрического микрофона с рупором; 3 — полосовой усилитель ультразвуковых частот полосой пропускания 4 кГц и средней частотой 40 кГц; 4 — амплитудный детектор; 5 —фильтр нижних частот; 5 — усилитель низкой частоты; 7 — головные телефоны; 8— усилитель к стрелочному индикатору; 9 — стрелочный индикатор.

Прибор работает следующим образом. Электромагнитные колебания от искрового разряда наводят в магнитной антенне э. д. с. с широким спектром частот. Частично выделенные контуром радиодатчика электрические колебания с частотой 40 кГц поступают на полосовой усилитель ультразвуковых частот, усиливаются им и после амплитудного детектора попадают на фильтр нижних частот. Он имеет завал в области частот выше 3 кГц. Низкие частоты, выделенные фильтром, поступают на усилитель низкой частоты. К выходу УНЧ подключаются телефоны и вход усилителя стрелочного индикатора.

Прибор с акустическим датчиком отличается тем, что акустические колебания с широким спектром, возникающие при искровом разряде, преобразуются пьезоэлектрическим кристаллом в электрический сигнал, который подается на вход полосового усилителя ультразвуковых частот.

Места индустриальных помех обнаруживаются следующим образом: радиодатчик подключают к прибору и устанавливают наличие радиопомех, а по возрастанию сигнала определяют их район. Затем подключают акустический датчик и направляют рупор в сторону вероятного расположения искрового разряда (сетевые изоляторы, электрические провода со скруткой, светильники и т. д.) и, ориентируясь по увеличению сигнала, находят это место.

Электрическая схема прибора изображена на рис. 75, б. Прибор собран на восьми транзисторах типа ГТ109 и двух диодах типа Д9Б. Катушки L1, L2, L3, L4 намотаны проводом ПЭВ-1 0,15, содержат 600, 750, 600, 600 витков соответственно и заключены в сердечники СБ-23-11а. Катушка L5 имеет 700—750 витков провода ПЭВ-1 0,15 и намотана на ферритовом стрежне (ц = 400, длина 100 мм).

В качестве индикатора использован микроамперметр М476 от магнитофона «Романтик».

Конструкция акустического датчика изображена на рис. 75, в. Детали датчика закреплены в корпусе клеем БФ-2 или каким-либо Другим. Пьезоэлемент установлен на трех стойках из оргстекла. Он соединен с мембраной иглой диаметром 1 мм. Сверху датчик закрыт защитной сеткой.

Рупор изготовлен из листовой латуни или бронзы, места соединений пропаяны.

В корпусе прибора смонтирован радиодатчик с источником питания. Габариты прибора 140 X 60 X 40 мм. Акустический датчик собран отдельно и имеет размеры 120 X 90 X 90 мм. Масса прибора с акустическим датчиком не более 350 г. Питается прибор от аккумулятора Д-0,25. Головные телефоны ТМ-1.

Эта группа приборов использует физические свойства среды, в которой может размещаться закладное устройство, или свойства элементов закладных устройств, независимые от режима их работы.

Так как в пустотах сплошных сред (кирпичных и бетонных стенах, деревянных конструкциях и др.) могут устанавливаться долговременные дистанционно-управляемые закладные устройства, то выявление и обследование пустот проводится при «чистке» помещений.

В простейшем случае пустоты в стене или любой другой сплошной среде обнаруживаются путем их простукивания. Пустоты в сплошных средах изменяют характер распространения структурного звука, в результате чего воспринимаемые слуховой" системой человека спектры звуков в сплошной среде и в пустоте отличаются.

Технические среДства обнаружения пустот позволяют повысить достоверность выявления пустот. В качестве таких средств могут применяться как различные ультразвуковые приборы, в том числе медицинского назначения, так и специальные обнаружители пустот. Специальные технические средства для обнаружения пустот используют:

Отличия в значениях диэлектрической проницаемости среды и пустоты;

Различия в значениях теплопроводности воздуха и сплошной среды:

Отражения акустических волн в ультразвуковом диапазоне от границ раздела «твердая среда - воздух»).

В пустоте (воздухе) диэлектрическая постоянная близка к единице, для бетона, кирпича, дерева она значительно больше. Диэлектрики с разными значениями диэлектрической постоянной по-разному деформируют электрическое поле, создаваемое обнаружителем пустоты. По изменению диэлектрической индукции локализуется пустота. Так обнаружитель пустот «Кайма» выявляет полости в кирпичных или бетонных стенах размером 6 х 6 х 12 см и 6 х 6 х 25 см.

С помощью ультразвукового томографа Д 1230 обнаруживаются пустоты объемом от 30 см 3 на глубине до 1 м, ультразвукового толщинометра Д 1220 - глубиной до 50 см.

Эффективным средством выявления пустот в стенах, нагретых на несколько градусов выше температуры воздуха в помещении, являются тепловизоры. Чувствительность охлаждаемых тепловизоров достигает 0,01 градуса по Цельсию, неохлаждаемых - на порядок хуже. За счет разницы теплопроводности бетона или кирпича стен и воздуха границы пустот с воздухом при нагревании или охлаждении помещения могут наблюдаться на экране тепловизора.

Переносной неохлаждаемый тепловизор ТН-3 («Спектр») со встроенным цифровым процессором обеспечивает возможность наблюдения на экране изображений в ИК-диапазоне (8-13 мкм) объекта при минимальной разности температуры элементов его поверхности 0,15 град. Комплект тепловизора содержит камеру размером 110 х 165 х 455 мм и массой 6 кг, малогабаритный монитор и блок питания.

Металлодетекторы обнаруживают закладные устройства по магнитным и электрическим свойствам их элементов. Любая закладка содержит токопроводящие элементы: резисторы, индуктивности, соединительные токопроводники в навесном или микроминиатюрном исполнении, антенну, корпус элементов питания, металлический корпус закладки.

По принципу действия различают параметрические (пассивные) и индукционные (активные) металлодетекторы. По конструкции - стационарные и ручные. Для обнаружения малых токопроводящих элементов применяют в основном ручные металлодетекторы, которые можно приблизить вплотную к токопроводящему элементу.

В параметрических металлодетекторах токопроводящие элементы, попадающие в зону действия поисковой рамки (катушки) диаметром 250-300 мм, изменяют ее индуктивность. Эта катушка является индуктивностью колебательного контура поискового генератора, частота колебаний которого составляет 50-500 кГц. Чем выше частота колебаний генератора, тем больше отклонение частоты генератора, т. е. тем выше чувствительность металлодетектора, Но одновременно сильнее сказывается влияние среды, особенно грунта земли. Поэтому в некоторых типах металлодетектора поисковую катушку запитывают негармоническим сигналом с частотой 15-50 кГц, а для измерения отклонения частоты используются гармоники колебания на частотах 500-1000 кГц.

Для измерения отклонения частоты колебаний генератора параметрического металлодетектора широко применяется метод «биений» - явления, возникающего при сложении двух колебаний с близкими частотами. Одно колебание с изменяющейся частотой создается поисковым генератором, другое - эталонным генератором со стабилизированной частотой. Частоты этих колебаний устанавливаются равными при отсутствии в зоне действия поисковой рамки посторонних предметов. Частота биений поступает в виде тональной частоты на наушники и световой индикатор. По частоте тона звукового сигнала и миганий светового индикатора можно локализовать область, внутри которой находится металлический предмет.

Достоинством параметрических металлодетекторов является их магнитная селективность - способность разделять металлы по магнитным свойствам. Известно, что черные металлы (чугун, сталь, кобальт, сплавы) имеют удельную магнитную проницаемость ц» 1. У цветных парамагнитных металлов (титана, алюминия, олова, платины и др.) этот показатель незначительно больше 1, у диамагнитных металлов (золота, меди, серебра, свинца, цинка и др.) - незначительно меньше 1. Следовательно, по знаку и величине отклонения частоты поискового генератора от номинального (нулевого) значения можно судить о типе попавшего в зону действия рамки металлического предмета. Эта возможность расширила область применения ручных металлодетекторов, в том числе для поиска кладов, и активизировало исследования по их совершенствованию в середине 90-х годов XX в.

Однако чувствительность пассивных параметрических металлодетекторов недостаточна для обнаружения находящихся в неоднородной среде металлических предметов. Глубину обнаружения увеличивают в индукционных металлодетекторах. В них с помощью специального генератора и излучающей поисковой рамки (катушки) создают магнитное поле. Оно индуцирует в токопро водящих предметах вихревые токи, создающие вторичное поле. Это поле принимается другой, измерительной, катушкой металло-детектора. Наводимый в нем сигнал фильтруется, обрабатывается, усиливается и подается на звуковой и световой индикатор ме-таллдетектора.

Различают аналоговые и импульсные индукционные метал-лодетекторы. В аналоговых металлодетекторах на поисковую катушку поступает от генератора гармонический сигнал с частотой 3-20 кГц. В импульсных металлодетекторах удается за счет мощного короткого импульса, подаваемого в поисковую катушку, сформировать магнитное поле с напряженностью 100-1000 А/м, на порядок превышающей напряженность поля аналогового металлоде-тектора и проникающей до 2 м в грунт земли.

Так как магнитное поле поисковой катушки пронизывает измерительную катушку, то основной технической проблемой индукционных металлодетекторов является компенсация сигналов, наводимых этим полем в измерительной катушке. Компенсация сигналов в измерительной катушке достигается за счет взаимно перпендикулярного пространственного расположения осей поисковой и измерительной катушек, использования компенсационной катушки с параметрами, идентичными параметрам измерительной, но с противоположным направлением намотки провода, а также путем соответствующей обработки сигналов.

Характеристики сигнала в измерительной катушке зависят от размеров токопроводящей поверхности объекта, ее электропроводности, магнитной проницаемости материала и частоты поля. Выделение очень слабых сигналов, наводимых в измерительной катушке металлодетектора вторичным полем мелких металлических предметов, на фоне различных помех, а также компенсация помех требует достаточно сложных алгоритмов оптимальной обработки, реализуемых микропроцессорной техникой.

Для обнаружения закладок применяются в основном ручные металлодетекторы. Измерительная и поисковая катушки в них могут выполняться в виде торроида диаметром порядка 140-150 мм, укрепленного на корпусе ручки (АКА 7202) или непосредственно в корпусе металлодетектора («Минискан»). Металлодетектор имеет звуковой и световой индикаторы, регулятор настройки чувстви тельности; питание ручных металлодетекторов от химических источников тока. Проблема автоматической подстройки коэффициента усиления металлодетектора под параметры среды решается микропроцессором. Максимальная чувствительность металлодетектора характеризуется обломком иглы длиной 5 мм, находящимся в поле действия измерительной катушки. Вес ручных металлодетекторов невелик: от 260 г до нескольких кг.

Для интерскопии предметов непонятного назначения применяют переносные рентгеновские установки. Переносные рентгеновские установки бывают двух видов:

Флюороскопы с отображением изображений на экране просмотровой приставки;

Рентгенотелевизионные установки.

Переносные флюороскопы состоят из излучателя, пульта дистанционного управления, просмотровой приставки с люминесцентным экраном, аккумуляторного блока, зарядного устройства, соединительных кабелей и сумок для переноса установки (транспортной упаковки). Обследуемый предмет размещается между излучателем и просмотровой приставкой на расстоянии около 50 см от излучателя и вплотную к просмотровой приставке.

Проникающая способность рентгеновских лучей пропорциональна анодному напряжению на рентгеновской трубке, которое достигает у некоторых переносных флюороскопов 250 кВ. Например, досмотровая рентгеновская установка «Шмель-90/K» фирмы «Флэш Электронике» для обеспечения высокой проникающей способности имеет анодное напряжение 90 кВ. Она просвечивает стальную пластину толщиной 2 мм, бетонную стену толщиной до 100 мм, позволяет различить за преградой из алюминия толщиной 3 мм две медные проволоки диаметром 0,2 мм, расположенные на расстоянии 1 мм друг от друга. Рабочее поле экрана просмотровой приставки - круг диаметром 255 мм.

С целью повышения безопасности оператора в современных переносных рентгеновских флюроскопах (например, в флюороскопе Яуза-1 фирмы «Novo») используется люминесцентный экран с запоминанием, позволяющий рассматривать изображение после выключения высокого напряжения. В состав таких комплексов включается специализированный термоконтейнер для стирания изображения с люминесцентных экранов.

Уменьшение мощности рентгеновского излучения и масса-га-баритных характеристик установки достигается усилением яркости изображения экрана. Переносной рентгеновский флюороскоп ФП-1 («Спектр») с коэффициентом усиления яркости экрана не менее 30000 имеет малые размеры (270 х 240 х 920 мм) и массу (3 кг). В то же время размеры его флюороскопического экрана составляют 250 х 250 мм. Дополнительно к нему поставляется фото- или видеоприставка для документирования изображений.

Для просвечивания тонких предметов с неметаллическими корпусами применяют установки с радиоактивными изотопами низкой активности. Такие установки компактны, просты в управлении и безопасны. Например, рентгеновская микроустановка РК-990 с габаритами 220 х 210 мм и массой 1,7 кг просвечивает объект с размерами до 63 х 87 мм.

В рентгенотелевизионных установках теневое изображение преобразуется в телевизионное изображение на экране удаленного от излучателя монитора. Например, рентгеновский аппарат «Шмель-экспресс» обеспечивает возможность наблюдения изображения объекта как на экране монитора, удаленного до 2 м от рентгеновской установки, так и на экране просмотровой приставки комплекса «Шмель-90К». Размер экрана рентгенотелевизионного преобразователя 360 х 480 мм. Эта установка позволяет запоминать до 1000 изображений и обеспечивает информационно-техническое сопряжение с ПЭВМ.

Применение рентгеновских установок для исследования закладных устройств ограничивается сравнительно их высокой стоимостью.

Объем инвестиций:

100 000 000 Руб


Цель представления:

Соинвестирование


Описание проекта

1) Название проекта: Приборы для обнаружения пустот, подземных ходов, захоронений, полиэтиленовых газопроводов и немагнитных боеприпасов.

2) Краткое описание проекта: Актуальность данной тематики заключается в том, что в настоящее время нет портативных и надежных приборов позволяющих определить существующими методами расположение аномалий грунта, и по характеру аномалий производить обнаружения пустот, подземных ходов и захоронений .
Поиск и обнаружение биологических останков в настоящее время является не решенной мировой проблемой. В настоящее время отечественные и импортные радиоволновые миноискатели могут только обнаружить неметаллический предмет , т.е. нет селекции немагнитных мин от камней и предметов близкого размера .
Также имеется острая необходимость для армии и спецслужб в обнаружении тонкого не запитанного кабеля при разминировании (от фугаса до радиовзрывателя), такие приборы в настоящее время в нашей стране и за рубежом отсутствуют.

В период 1990...2010 г. были разработаны и опробованы ряд модификаций приборов ИГА-1 для измерения сверхслабых электромагнитных полей естественного поля Земли и искажений этих полей вносимых от поглощения и переизлучения различными объектами. Приборы, представляют из себя селективные приемники электромагнитных полей в диапазоне 5...10 кгц, с вычислением интеграла фазового сдвига на измеряемой частоте (http:// www.iga1.ru).

Принцип действия прибора ИГА-1 похож на радиоволновые миноискатели, только нет излучателя, которым является естественный фон Земли и более низкий диапазон частот. ИГА-1 фиксирует искажение электромагнитного поля в местах неоднородностей грунта при наличии под землей каких либо предметов, и предназначен для поиска неметаллических предметов, пустот, водяных жил, трубопроводов, человеческих останков по изменению фазового сдвига на границе перехода сред.
В качестве выходного параметра прибора используется интеграл фазового сдвига на частоте приема, величина которого изменяется на границе перехода сред (грунт-труба, грунт-пустота).

Прибор выполнен в виде переносного измерительного датчика с визуальной индикацией. Питание прибора осуществляется от аккумулятора. Вес всей аппаратуры в чемодане не превышает 5 кг, вес измерительного датчика не более 1 кг.

3) Характер проекта: - расширение действующего производства - выполнение НИОКР - продажа лицензий на производство новых вариантов приборов другим производителям.

4) Отрасль применения:
· Высокие технологии, наукоемкие технологии
· Приборостроение, радиоэлектронная промышленность

5) Регион приложения инвестиций: Россия, Башкортостан.

6) Объем требуемых инвестиций, в рублях 100 млн.руб

7) Срок окупаемости, лет 5 лет

8) Период реализации проекта, лет С 1994 г ---- 2016 г.

9) Форма сотрудничества:
· Акционерный капитал
· Долевое участие


Состояние проекта

10) Степень готовности проекта
Фирмой "Лайт-2" с 1994 г организовано производство приборов ИГА-1 на базе оборонных предприятий, выпущено более 300 приборов, которые используются в России и за рубежом.
Варианты приборов ИГА-1 для обнаружения водных жил отработаны и не требуют дополнительных инвестиций.
Обнаружение полиэтиленовых газопроводов отработано в ручном(не автоматизированном) режиме и предполагает работу хорошо обученного оператора.

Требуется модернизация и дальнейшая отработка приборов ИГА-1 для обнаружения пустот, подземных ходов, захоронений и немагнитных боеприпасов, полиэтиленовых газопроводов согласно полученных патентов на изобретения:
Патент РФ N 2119680 от 27.09.1998 г. Способ геоэлектромагнитной разведки и устройство для его реализации. Кравченко Ю.П., Савельев А.В. и др.
Патент РФ № 2116099 от 27.07.1998 г. Способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления. Кравченко Ю. П., Савельев А. В. и др.
Патент РФ № 2206907 от 20 июня 2003 г. «Устройство для поиска и идентификации пластиковых мин», Кравченко Ю.П. и др. Патент РФ № 2202812 от 20 апреля 2003 г."Устройство для поиска подземных трубопроводов", Кравченко Ю.П. и др.

По поиску человеческих останков прибор ИГА-1 впервые прошел апробацию в поселке Нефтегорск (1995 г.), после землетрясения было найдено около 30 погибших.
Отзыв главы администрации поселка Нефтегорск на сайте http:// www.iga1.ru .
В Екатеринбурге (1996 г) по линии МВД проведена работа по обнаружению трупов замурованных в автодорогу «Сибирский тракт» и захоронений в лесу в районе Нижнеисетского кладбища.
В 2001-2010 гг. с помощью прибора ИГА-1 удалось обнаружить могилы 100-150 летней давности при рестоврации и восстановлдении храмов: Георгиевского монастыря «Святые Кустики» Благовещенского района Башкирии, храма«Святой Троицы» села Красный Яр в Башкортостане, а также и и других храмов Башкортостана и Татарстана.
В 2008 году по просьбе жителя г.Туймазы были произведены поиски заброшенной могилы его отца Ивана Безымянникова, участника войны, бывшего секретаря райкома. Могила находилась в городском парке, после реконструкции парка в 1991 г. следы захоронения были потеряны. После раскопок было произведено перезахоронение останков на городском кладбище.

При проведении поисковых исследований (2003 г.) в районе боев 1-й отдельной горно-стрелковой бригады в период Великой Отечественной войны, в Кировском районе Ленинградской области с помощью прибора ИГА-1 было опробована возможность обнаружения засыпанных окопов, блиндажей и захоронений, а также боеприпасов. Было установлено, что прибор ИГА-1 реагирует на боеприпасы и металлические предметы аналогично миноискателю ИПМ. Для обнаружения пустот и захоронений, вначале необходимо обнаружить и убрать весь металл с исследуемого места, затем производится обнаружение пустот и захоронений.
Для селективной избирательности (только пустоты или человеческие останки) необходимо проводить дальнейшую модернизацию и совершенствование прибора ИГА-1

По поводу применения приборов ИГА-1 для инженерно-саперных целей была переписка с Советом безопасности РФ и Минобороной - направление по обнаружению не магнитных мин. Данное изобретение рассматривалось Комиссией по научно-техническим вопросам Совета безопасности РФ (1995 г, Малей М.Д.), в отделе изобретательства Минобороны (Потемкин О.А.), в/ч 52684-А (Шишлин А. Исх.565/ 2139 от 3.12.1996 г.), ЦНИИ 15 МО (Костив В. исх 1131 от 1.09.1998 г.).

Летом 2000 г. экспериментальный образец прибора ИГА-1 в варианте миноискателя проходил испытания в ЦНИИ 15 МО на предмет возможности обнаружения противотанковых, противопехотных немагнитных мин и залегающих на большой глубине неразорвавшихся фугасов, получен положительный отзыв. Отмечены также и недостатки, для их устранения требуется дальнейшая доводка аппаратуры, которая требует дополнительных инвестиций.
Учитывая, то, что существующие в мире миноискатели не магнитных мин не отличают их от камней близкого размера, дальнейшее развитие нашего метода позволит проводить такую селекцию по частоте приема путем снятия спектральных характеристик обнаруженных предметов.
Для определения возможности фиксации не запитанных кабелей при разминировании (от фугаса до радиовзрывателя) один из приборов ИГА-1 был настроен под эту задачу и проведено опробование на берегу р.Белой в Уфе, в месте где больше нет ни каких коммуникаций, в результате получено подтверждение о возможности использования ИГА-1 для этих задач.
По обнаружению подземных ходов, в которых могут скрываться террористы, к прибору ИГА-1 был большой интерес у западных военных специалистов на выставке российских разработок и оборудования для разминирования местности и утилизации боеприпасов, которая проводилась 29-30 апреля 2002 г. в г. Москва на предприятии «Базальт». Несколько приборов ИГА-1 были проданы организациям и кладоискателям под эти задачи и успешно используются.

11) Направление использования инвестиций:
· Исследования и разработки
· Закупка оборудования
· Внедрение новых технологий

12) Имеется поддержка органами власти На данный момент финансовой поддержки нет

13) наличие подготовленного бизнес-плана В стадии разработки

14) Финансовое обеспечение проекта:
· Собственные средства в настоящий момент отсутствуют.
· Государственное финансирование отсутствует.
· Ранее привлеченные собственные средства с 1994 г. 10 млн руб. в современном исчислении
· Недостающие средства 100 млн руб. на 5 лет.

15) Предоставление прав инвестору:
· Приобретение акций 48 %
· Доли от объема полученной прибыли при продаже лицензий на производство новых отработанных вариантов приборов 50 %

16) Контактная информация:
Адрес контактного лица: 450015, г.Уфа, ул.К. Маркса 65\1 кв 74 Кравченко Юрий Павлович
E-mail контактного лица: [email protected]
Контактное лицо: Кравченко Юрий Павлович
Телефоны контактного лица: 8-3472-51-80-69

Ключевые экономические показатели