Каковы концентрационные пределы взрываемости аммиака в воздухе. Взрывоопасная концентрация природного газа

Смесь природного газа с воздухом может взорваться при концентрации газа в воздухе 5-15%.

Смесь сжиженного газа в воздухе взрывается при концентрации 1,5-9,5%.

Для взрыва необходимо наличие одновременно 3 условий:

Газовоздушная смесь должна находиться в замкнутом объеме. На открытом воздухе смесь не взрывается, а вспыхивает.

Количество газа в природной смеси должна быть 5-15% для природного газа и 1,5-9,5% для сжиженного. При большей концентрации сместь загорит и при достижении предела она взорвется.

Смесь должна нагреваться в одной точке до температуры вспышки.

5 Доврачебная помощь пострадавшему от отравления угарным газом

Симптомы:

Появляется мышечная слабость

Головокружение

Шум в ушах

Сонливость

Галлюцинации

Потеря сознания

Судороги

Оказания помощи:

Остановить поступление угарного газа

Вынести пострадавшего на свежий воздух

Если пострадавший в сознании, уложить и обеспечит покой и непрерывный доступ свежего воздуха

Если нет сознания, необходимо начать закрытый массаж сердца и искусственного дыхания до приезда скорой помощи или до прихода в сознание.

Билет №10

5 Доврачебная помощь пострадавшему от ожогов

Термические вызванные огнем паром, горячими предметами и в-вами. Если на пострадавшем загорелась одежда, нужно быстро набросить пальто, любую плотную ткань или сбить пламя водой. Нельзя бежать в горящей одежде, так как ветер раздует пламя. При оказании помощи во избежания заражения нельзя касаться руками обоженных участков кожи или смазывать жирами, маслами, вазелином, присыпать питьевой содой. Нужно наложить на обоженный участок кожи стерильную повязку. Если куски одежды прилипли то поверх них следует повязку, нельзя срывать.

Билет №11

5 Содержание наряд допуска на газоопасные работы.

Письменное разрешение, указывается срок его действия, время начала работы, окончания работы, условия их безопасности, состав бригады и лиц отв. за безоп. работ. НД утвержд. гл. инженером. Список лиц имеющих право выд НД утвержд. приказом по предпр. НД выписывается в двух экз. на одного производителя работ с одной бригадой; на одно рабочее место. Один экземпляр передается производителю, др. остается у лица выдававшего наряд. Учет НД ведут по книге регистрации заносят: порядковый номер, краткое содержание, должность; Ф.И.О. отв. руков.; подпись.

Билет №12

5 доврачебная помощь пострадавшему т удушья природным газом

Вынести пострадавшего на свежий воздух

В случае отсутствия сознания и пульса на сонной артерии – приступить к комплексу реанимации

С влучае потери сознания более 4 минут – перевернуть на живот и приложить холод к голове

Во всех случаях вызвать скорую помощь

Билет №13

1 классификация газопроводов по давлению.

I- низкого (0-500мм.вод.ст.);(0,05 кг*с/см 2)

II-среднего (500-30 000мм.вод.ст.);(0,05-3 кг*с/см 2)

Билет №14

3 требование к освещению, вентиляции и отоплению в ГРП.

Необходимость отопления помещения ГРП следует определять в зависимости от климатических условий.

В помещениях ГТП следует предусматривать естественное и (или) искусственное освещение и естественную постоянно действующую вентиляцию, обеспечивающую не менее трехкратного воздухообмена в I час.

Для помещений объемом более 200 м3 воздухообмен производится по расчету, но не менее однократного воздухообмена в 1 час.

Размещение оборудования, газопроводов, арматуры и приборов должно обеспечивать их удобное обслуживание и ремонт.

Ширина основного прохода в помещениях должна составлять не менее 0.8 м.

Основные физико-химические понятия взрывов в доменных и сталеплавильных цехах

Взрывы в доменных и мартеновских цехах вызываются разными причинами, но все они являются результатом быстрого перехода (превращения) вещества из одного состояния в другое, более устойчивое, сопровождающееся выделением тепла, газообразных продуктов и повышением давления в месте взрыва.


Основным признаком взрыва является внезапность и резкое повышение давления в среде, окружающей место взрыва.


Внешним признаком взрыва является звук, сила которого зависит от скорости перехода вещества из одного состояния в другое. В зависимости от силы звука различаются хлопки, взрывы и детонация. Хлопки отличаются глухим звуком, большим шумом или характерным треском. Скорость превращений в объеме вещества при хлопках не превышает нескольких десятков метров в секунду.


При взрывах издается отчетливый звук; скорость распространения превращений в объеме вещества значительно выше, чем при хлопках,—несколько тысяч метров в секунду.


Наибольшая скорость перехода вещества из одного состояния в другое получается при детонации. Этот вид взрывов характеризуется одновременным воспламенением вещества во всем объеме, причем мгновенно выделяется наибольшее количество тепла и газов и совершается максимальная работа разрушения. Отличительная особенность этого вида взрывов — почти полное отсутствие периода нарастания давления в среде вследствие огромной скорости превращений, достигающей нескольких десятков тысяч метров в секунду.

Взрывы газов

Взрыв представляет собой один из видов процесса горения, при котором реакция горения протекает бурно и с большими скоростями.


Горение газов и паров горючих веществ возможно только в смеси с воздухом или кислородом; время горения складывается из двух стадий: смешения газа с воздухом или кислородом и собственно процесса горения. Если смешение газа с воздухом или кислородом происходит во время процесса горения, то скорость его небольшая и зависит от поступления кислорода и горючего газа в зону горения. Если же газ и воздух смешаны заранее, то процесс горения такой смеси протекает бурно и одновременно во всем объеме смеси.


Первый вид горения, называемый диффузионным, получил широкое распространение в заводской практике; он применяется в различных топках, печах, аппаратах, где используется тепло для нагревания материалов, металлов, полуфабрикатов или изделий.


Второй вид горения, когда смешение газа с воздухом происходит до начала горения, называется взрывчатым, а смеси взрывоопасными. Такой вид горения в заводской практике применяется редко; он возникает иногда самопроизвольно.


При спокойном горении образующиеся газообразные продукты, нагретые до высокой температуры, свободно увеличиваются в объеме и отдают свое тепло на пути от топки к дымовым устройствам.


При взрывчатом горении процесс протекает «мгновенно»; завершается в доли секунды во всем объеме смеси. Нагретые до высокой температуры продукты горения также «мгновенно» расширяются, образуют ударную волну, которая с большой скоростью распространяется во все стороны и производит механические разрушения.


Наиболее опасными являются взрывчатые смеси, возникающие неожиданно и самопроизвольно. Такие смеси образуются в пылеуловителях, газовых каналах, газопроводах, горелках и других газовых устройствах доменных, мартеновских и других цехов. Они также образуются вблизи газовых устройств в местах, где отсутствует движение воздуха, а газы через неплотности просачиваются наружу. В таких местах взрывоопасные смеси воспламеняются от постоянных или случайных источников огня и тогда неожиданно возникают взрывы, травмирующие людей и причиняющие большой ущерб производству.

Пределы взрываемости газов

Взрывы газо-воздушных смесей происходят лишь при определенных содержаниях газа в воздухе или кислороде, причем каждый газ имеет свои, присущие ему одному, пределы взрываемости — нижний и верхний. Между нижним и верхним пределами все смеси газа с воздухом или кислородом взрывоопасны.


Нижний предел взрываемости характеризуется наименьшим содержанием газа» в воздухе, при котором смесь начинает взрываться; верхний — наибольшим содержанием газа в воздухе, выше которого смесь теряет свойства взрываемости. Если содержание газа в смеси с воздухом или кислородом будет меньше нижнего предела или больше верхнего, то такие смеси не взрывоопасны.


Например, нижний предел взрываемости водорода в смеси с воздухом равен 4,1% и верхний 75% по объему. Если водорода меньше 4,1%, то смесь его с воздухом не взрывоопасна; она не взрывоопасна и в том случае, если водорода в смеси больше 75%. Все смеси водорода с воздухом становятся взрывоопасными, если содержание в них водорода находится в пределах от 4,1% до 75%.


Необходимым условием образования взрыва является также воспламенение смеси. Все горючие вещества воспламеняются лишь тогда, когда они нагреты до температуры воспламенения, которая также является очень важной характеристикой всякого горючего вещества.


Например, водород в смеси с воздухом самовоспламеняется и происходит взрыв, если температура смеси станет больше или равной 510° С. Однако не обязательно, чтобы весь объем смеси был нагрет до 510° С. Взрыв произойдет, если до температуры самовоспламенения будет нагрета хотя бы небольшая часть смеси.


Процесс самовоспламенения смеси от источника огня происходит в следующем порядке. Ввод в газо-воздушную смесь источника огня (искры, пламени горящего дерева, выброса из печи раскаленного металла или шлака и т. п.) приводит к нагреву частиц смеси, окружающих источник огня до температуры самовоспламенения. В результате в прилегающем слое смеси возникнет процесс воспламенения, произойдет нагрев и расширение слоя; тепло передается соседним частицам, они также воспламенятся и передадут свое тепло расположенным дальше частицам и т. д. При этом самовоспламенение всей смеси происходит настолько быстро, что слышится один звук хлопка или взрыва.


Непременное условие всякого горения или взрыва состоит в том, чтобы количество выделяющегося тепла было достаточно для нагрева среды до температуры самовоспламенения. Если тепла будет выделяться недостаточно, то горение и, следовательно, взрыв не произойдет.


В тепловом отношении пределы взрываемости являются границами, когда при сгорании смеси выделяется так мало тепла, что его недостаточно, чтобы нагреть среду горения до температуры самовоспламенения.


Например, при содержании водорода в смеси меньше 4,1% при горении выделяется так мало тепла, что среда не нагревается до температуры самовоспламенения 510° С. В такой смеси содержится очень мало горючего (водорода) и очень много воздуха.


То же самое происходит, если в смеси содержание водорода будет больше 75%. В такой смеси находится очень много горючего вещества (водорода), но очень мало необходимого для горения воздуха.


Если всю газо-воздушную смесь нагреть до температуры самовоспламенения, то газ воспламенится без поджигания при любых соотношениях его с воздухом.


В табл. 1 приводятся пределы взрываемости ряда газов и паров, а также их температуры самовоспламенения.


Пределы взрываемости газов в смеси с воздухом меняются в зависимости от начальной температуры смеси, ее влажности, мощности источника зажигания и др.


Таблица 1. Пределы взрываемости некоторых газов и паров при температуре 20° и давлении 760 мм ртутного столба


При повышении температуры смеси пределы взрываемости расширяются — нижний понижается, а верхний увеличивается.


Если газ состоит из нескольких горючих газов (генераторный, коксовый, смесь коксового и доменного и т. п.), то пределы взрываемости таких смесей находят расчетом, пользуясь формулой правила смешения Ле-Шателье:


где а — нижний или верхний предел взрываемости смеси газов с воздухом в объемных процентах;


k1,k2,k3,kn — содержание газов в смеси в объемных процентах;


n1,n2,n3,nn — нижний или верхний пределы взрываемости соответствующих газов в объемных процентах.


Пример. В газовой смеси содержатся: водород (Н2)— 64%, метан (СН4) — 27,2%, окись углерода (СО) —6,45% и тяжелый углеводород (пропан) —2,35%, т. е. kx = 64; k2 = 27,2; k3 = 6,45 и k4 = 2,35.


Определим нижний и верхний пределы взрываемости газовой смеси. В табл. 1 находим нижний и верхний пределы взрываемости водорода, метана, окиси углерода и пропана и их значения подставим в формулу (1).


Нижние пределы взрываемости газов:


n1 = 4,1%; n2 = 5,3%; п3= 12,5% и n4 = 2,1%.


Нижний предел aн = 4,5%


Верхние пределы взрываемости газов:


n1 = 75%; n2 = 15%; n3 = 75%; n4 = 9,5%.


Подставляя эти значения в формулу (1), находим верхний предел ав = 33%


Пределы взрываемости газов с большим содержанием инертных негорючих газов — углекислоты (С02), азота (N2) и паров воды (Н20) — удобно находить по кривым диаграммы, построенным на основании опытных данных (рис. 1).


Пример. Пользуясь диаграммой на рис. 1, найдем пределы взрываемости для генераторного газа следующего состава: водорода (Н2) 12,4%, окиси углерода (СО) 27,3%, метана (СН4) 0,7%, углекислого газа (С02) 6,2% и азота (N2) 53,4%.


Распределим инертные газы С02 и N2 между горючими; углекислый газ присоединим к водороду, тогда суммарный процент этих двух газов (Н2 + С02) будет 12,4 + 6,2=18,6%; азот присоединим к окиси углерода, суммарный процент их (СО + N2) будет 27,3 + + 53,4 = 80,7%. Метан учтем отдельно.


Определим в каждой сумме двух газов отношение инертного газа к горючему. В смеси водорода и углекислого газа отношение составит 6,2/12,4= 0,5, а в смеси окиси углерода и азота отношение 53,4/27,3= 1,96.


На горизонтальной оси диаграммы рис. 1 находим точки, соответствующие 0,5 и 1,96 и проводим вверх перпендикуляры до встречи с кривыми (Н2 + С02) и (CO + N2).


Рис. 1. Диаграмма для нахождения нижнего и верхнего пределов взрываемости горючих газов в смеси с инертными газами


Первое пересечение с кривыми произойдет в точках 1 и 2.


Проводим из этих точек горизонтальные прямые до встречи с вертикальной осью диаграммы и находим: для cмеси (Н2 + С02) нижний предел взрываемости aн = = 6%, а для смеси газов (СО + N2) ан = 39,5%.


Продолжая перпендикуляр вверх, пересекаем те же кривые в точках 3 и 4. Проводим из этих точек горизонтальные прямые до встречи с вертикальной осью диаграммы и находим верхние пределы взрываемости смесей aв, которые.соответственно равны 70,6 и 73% .


По табл. 1 находим пределы взрываемости метана ан = 5,3% и ав = 15%. Подставляя полученные верхние и нижние пределы взрываемости смесей горючего и инертного газов и метана в общую формулу Ле-Шателье, находим пределы взрываемости генераторного газа.

  • Низшая теплота сгорания некоторых компонентов природного газа
  • Пределы взрываемости газовоздушных смесей
  • Пределы и интервал взрываемости газов в смеси с воздухом при температуре 20 °с и давлении 0,1 мПа
  • 1.2. Законы идеальных газов. Области их применения
  • Критические параметры некоторых веществ
  • 1.3. Технологические характеристики природных газов и их компонентов
  • 1.4. Термодинамическое обеспечение решения энерготехнологических задач трубопроводного транспорта природных газов
  • Значение коэффициента Джоуля-Томсона () для метана в зависимости от температуры и давления
  • Значения параметров природного газа с содержанием метана 97% в зависимости от температуры при среднем давлении 5 мПа
  • Глава 2 назначение и устройство компрессорных станций
  • 2.1. Особенности дальнего транспорта природных газов
  • 2.2. Назначение и описание компрессорной станции
  • 2.3. Системы очистки технологического газа на кс
  • 2.4. Технологические схемы компрессорных станций
  • 2.5. Назначение запорной арматуры в технологических обвязках кс
  • 2.6. Схемы технологической обвязки центробежного нагнетателя кс
  • 2.7. Конструкции и назначения опор, люк-лазов и защитных решеток в обвязке гпа
  • 2.8. Системы охлаждения транспортируемого газа на компрессорных станциях
  • 2.9. Компоновка газоперекачивающих агрегатов на станции
  • 2.10. Система импульсного газа
  • 2.11. Система топливного и пускового газа на станции
  • 2.12. Система маслоснабжения кс и гпа, маслоочистительные машины и аппараты воздушного охлаждения масла
  • 2.13. Типы газоперекачивающих агрегатов, применяемых на кс
  • Уральский турбомоторный завод (узтм), г. Екатеринбург
  • Невский завод им. Ленина (нзл), г.Санкт-Петербург
  • Первый Бриенский завод (Чехия), г.Брно
  • Показатели злектроприводных агрегатов
  • Показатели газомотокомпрессоров
  • Структура парка гпа в системе оао "Газпром"
  • Показатели перспективных газотурбинных установок нового поколения
  • 2.14. Нагнетатели природного газа. Их характеристики
  • 2.34. Неполнонапорный одноступенчатый нагнетатель 370-18 агрегата гтк-10-4 производства нзл:
  • Характеристики центробежных нагнетателей для транспорта природных газов
  • 2.15. Электроснабжение кс Электроснабжение газотурбинных кс и гпа
  • Электроснабжение гпа
  • Электроснабжение электроприводной кс
  • Резервные аварийные электростанции
  • Система питания постоянным током автоматики и аварийных насосов смазки гпа, автоматики зру-10 кВ, аварийного освещения
  • 2.16. Водоснабжение и канализация кс
  • Теплоснабжение кс
  • 2.17. Организация связи на компрессорных станциях
  • 2.18. Электрохимзащита компрессорной станции
  • 2.19. Грозозащита компрессорной станции
  • Глава 3 эксплуатация газоперекачивающих агрегатов с газотурбинным приводом
  • 3.1. Организация эксплуатации цехов с газотурбинным приводом
  • 3.2. Схемы и принцип работы газотурбинных установок
  • 3.3. Подготовка гпа к пуску
  • 3.4. Проверка защиты и сигнализации гпа
  • Защита по давлению масла смазки
  • Защита по погасанию факела
  • Защита по осевому сдвигу роторов
  • Защита по перепаду между маслом уплотнения и газом в полости нагнетателя (защита "масло-газ")
  • Защита от превышения температуры газа
  • Защита по превышению частоты вращения роторов твд, тнд и турбодетандера
  • Защита по температуре подшипников
  • Система защиты от вибрации
  • 3.6. Обслуживание агрегата и систем кс в процессе работы
  • 3.7. Подготовка циклового воздуха для гту
  • 3.8. Очистка осевого компрессора в процессе эксплуатации
  • 3.9. Устройство для подогрева всасывающего циклового воздуха. Антиобледенительная система
  • 3.10. Противопомпажная защита цбн
  • 1’’’ - Режим работы нагнетателя с малыми возмущениями. I - линия контроля помпажа;
  • 3.11. Работа компрессорной станции при приеме и запуске очистных устройств
  • 3.12. Особенности эксплуатации гпа при отрицательных температурах
  • 3.13. Система пожаротушения гпа и ее эксплуатация
  • 3.14. Вибрация, виброзащита и вибромониторинг гпа
  • 3.15. Нормальная и аварийная остановка агрегатов
  • 3.16. Остановка компрессорной станции ключом аварийной остановки станции (каос)
  • Глава 4 эксплуатация газоперекачивающих агрегатов с электроприводом
  • 4.1. Характеристика приводов, основные типы эгпа и их устройство
  • Техническая характеристика гпа с электроприводом
  • 4.2. Системы избыточного давления и охлаждения статора и ротора электродвигателя
  • 4.3. Системы масло-смазки и масло-уплотнения эгпа, их отличие от систем гту
  • 4.4. Редукторы - мультипликаторы, применяемые на электроприводных гпа
  • 4.5. Особенности подготовки к пуску и пуск гпа
  • 4.6. Обслуживание эгпа во время работы
  • 4.7. Регулирование режима работы гпа с электроприводом
  • 4.8. Применение на кс электроприводных гпа с регулируемой частотой вращения
  • 4.9. Эксплуатация вспомогательного оборудования и систем компрессорного цеха
  • 4.10. Совместная работа электроприводного и газотурбинного компрессорных цехов
  • Глава 1. Характеристики природных газов
  • Глава 2. Назначение и устройство компрессорных станций
  • Глава 3. Эксплуатация газоперекачивающих агрегатов с газотурбинным приводом
  • Глава 4. Эксплуатация газоперекачивающих агрегатов с электроприводом
  • Пределы взрываемости газовоздушных смесей

    Исключение образования взрывоопасных газовоздушных концентраций, а также появление источников воспламенения этой смеси (пламени, искр) всегда является основной задачей обслуживающего персонала компрессорных станций. При взрыве газовоздушной смеси резко повышается давление в зоне взрыва, приводящее к разрушению строительных конструкций, а скорость распространения пламени достигает сотни метров в секунду. Например, температура самовоспламенения метановоздушной смеси находится на уровне 700 °С, а метан является основным компонентом природного газа. Его содержание в газовых месторождениях колеблется в диапазоне 92-98%.

    При взрыве газовоздушной смеси, находящейся под давлением 0,1 МПа, развивается давление около 0,80 МПа. Газовоздушная смесь взрывается, если в ней содержится 5-15 % метана; 2-10 % пропана; 2-9 % бутана и т.д. При повышении давления газовоздушной смеси пределы взрываемости сужаются. Следует отметить, что примесь кислорода в газе увеличивает опасность взрыва.

    Пределы и интервал взрываемости газов в смеси с воздухом при температуре 20 °С и давлении 0,1 МПа приведены в табл. 1.4.

    Таблица 1.4

    Пределы и интервал взрываемости газов в смеси с воздухом при температуре 20 °с и давлении 0,1 мПа

    Пределы взрываемости, % по объему

    Интервал взрываемости, % по объему

    Ацетилен

    Нефтепромысл. газ

    Оксид углерода

    Природный газ

    Пропилен

    1.2. Законы идеальных газов. Области их применения

    Идеальными газами принято считать газы, подчиняющиеся уравнению Клапейрона (). Одновременно под идеальными подразумеваются газы, в которых отсутствуют силы межмолекулярного взаимодействия, а объем самих молекул равен нулю. В настоящее время можно утверждать, что ни один из реальных газов не подчиняется этим газовым законам. Тем не менее эти специфические газовые законы достаточно широко используются в технических расчетах. Эти законы просты и достаточно хорошо характеризуют поведение реальных газов при невысоких давлениях и не очень низких температурах, вдали от областей насыщения и критических точек вещества. Наибольшее практическое распространение получили законы Бойля-Мариотта, Гей-Люссака, Авогадро и на их основе полученное уравнение Клапейрона-Менделеева.

    Закон Бойля-Мариотга утверждает, что при постоянной температуре (= const) произведение абсолютного давления и удельного объема идеального газа сохраняет постоянную величину (
    = const), т.е. произведение абсолютного давления и удельного объема зависит только от температуры. Откуда при = const имеем:

    . (1.27)

    Закон Гей-Люссака утверждает, что при постоянном давлении (= const) объем идеального газа изменяется прямо пропорционально повышению температуры:

    , (1.28)

    где - удельный объем газа при температуре °С и давлении
    - удельный объем газа при температуре = 0 °С и том же давлении ; - температурный коэффициент объемного расширения идеальных газов при 0 °С, сохраняющий одно и то же значение при всех давлениях и одинаковый для всех идеальных газов:

    . (1.29)

    Таким образом, содержание закона Гей-Люссака сводится к следующему утверждению: объемное расширение идеальных газов при изменении температуры и при = const имеет линейный характер, а температурный коэффициент объемного расширения является универсальной постоянной идеальных газов.

    Сопоставление законов Бойля-Мариотта и Гей-Люссака приводит к уравнению состояния идеальных газов:

    , (1.30)

    где - удельный объем газа; - абсолютное давление газа; - удельная газовая постоянная идеального газа; - абсолютная температура идеального газа:

    . (1.31)

    Физический смысл удельной газовой постоянной - это удельная работа в процессе = const при изменении температуры на один градус.

    Закон Авогадро утверждает, что объем одного моля идеального газа не зависит от природы газа и вполне определяется давлением и температурой вещества (
    ). На этом основании утверждается, что объемы молей разных газов, взятых при одинаковых давлениях и температурах, равны между собой. Если - удельный объем газа, а - мольная масса, то объем моля (мольный объем) равен
    . При равных давлениях и температурах для разных газов имеем:

    Так как удельный мольный объем газа зависит в общем случае только от давления и температуры, то произведение
    в уравнении (1.32) - есть величина одинаковая для всех газов и поэтому называется универсальной газовой постоянной:

    , Дж/кмоль·К. (1.33)

    Из уравнения (1.33) следует, что удельные газовые постоянные отдельных газов определяются через их мольные массы. Например, для азота (
    ) удельная газовая постоянная будет

    = 8314/28 = 297 Дж/(кг·К). (1.34)

    Для кг газа с учетом того, что
    , уравнение Клапейрона записывается в виде:

    , (1.35)

    где - количество вещества в молях
    . Для 1 кмоля газа:

    . (1.36)

    Последнее уравнение, полученное русским ученым Д.И. Менделеевым, часто называют уравнением Клапейрона-Менделеева.

    Значение мольного объема идеальных газов в нормальных физических условиях (= 0 °С и = 101,1 кПа) составит:

    = 22,4 м/кмоль. (1.37)

    Уравнение состояния реальных газов часто записывают на основе уравнения Клапейрона с введением в него поправки , учитывающей отклонение реального газа от идеального

    , (1.38)

    где - коэффициент сжимаемости, определяемый по специальным номограммам или из соответствующих таблиц. На рис. 1.1 приведена номограмма для определения численных значений величины природного газа в зависимости от давления , относительной плотности газа по воздуху и его температуры . В научной литературе коэффициент сжимаемости обычно определяется в зависимости от так называемых приведенных параметров (давление и температура) газа:

    ;
    , (1.39)

    где , и
    - соответственно приведенное, абсолютное и критическое давление газа; , и - соответственно приведенная, абсолютная и критическая температура газа.

    Рис. 1.1. Номограмма расчёта в зависимости от , ,

    Критическим давлением называется такое давление, при котором и выше которого никаким повышением температуры жидкость уже не может быть превращена в пар.

    Критической температурой называется такая температура, при которой и выше которой ни при каком повышении давления нельзя сконденсировать пар.

    Численные значения критических параметров для некоторых газов приведены в табл. 1.5.

    Таблица 1.5

    Пределы взрываемости

    Пределы взрываемости - Под пределами взрываемости (правильнее - воспламенения) обычно имеются в виду минимальное (нижний предел) и максимальное (верхний предел) количество горючего газа в воздухе. При выходе за эти концентрации воспламенение невозможно, пределы воспламенения указываются в объемных процентах при стандартных условиях газовоздушной смеси (р=760 мм рт. ст., Т = 0 °C). С увеличением температуры газовоздушной смеси эти пределы расширяются, а при температурах выше температуры самовоспламенения смеси горят при любом объемном соотношении. Это определение не включает пределы взрываемости газопылевых смесей , пределы взрываемости которых рассчитываются по известной формуле Ле Шателье .

    Примечания


    Wikimedia Foundation . 2010 .

    Смотреть что такое "Пределы взрываемости" в других словарях:

      пределы взрываемости - — Тематики нефтегазовая промышленность EN explosivity limitexplosivity limits … Справочник технического переводчика

      пределы взрываемости - 3.18 пределы взрываемости (explosion limits): Максимальная и минимальная концентрация газа, пара, влаги, распылителя или пыли в воздухе или кислороде для возникновения детонации. Примечания 1 Пределы зависят от размера и геометрии камеры сгорания …

      Пределы взрываемости смесей NH 3 - O 2 - N 2 (при 20°С и 0,1013 МПа) - Предел взрываемости Содержание кислорода в смеси, % (об.) 100 80 60 50 40 30 20 … Химический справочник

      ГОСТ Р 54110-2010: Водородные генераторы на основе технологий переработки топлива. Часть 1. Безопасность - Терминология ГОСТ Р 54110 2010: Водородные генераторы на основе технологий переработки топлива. Часть 1. Безопасность оригинал документа: 3.37 авария (incident): Событие или цепочка событий, которые могут привести к ущербу. Определения термина из … Словарь-справочник терминов нормативно-технической документации

      - (лат. muscus), пахучие продукты со своеобразным, т. наз. мускусным, запахом и способностью облагораживать и фиксировать запах парфюм. композиций. Ранее единств. источником М. были прир. продукты животного и растит. происхождения. М. животного… … Химическая энциклопедия

      Предел воспламеняемости - определенный для каждого газа предел концентрации, при котором газовоздушные смеси могут воспламеняться (взрываться). Различают нижний (Кн) и верхний (Кв) концентрационные пределы взрываемости. Нижний предел взрываемости соответствует… … Нефтегазовая микроэнциклопедия

      - (транс 2 бензилиденгептаналь, a пентилкоричный альдегид, жасмональ) С 6 Н 5 СН=С(С 5 Н 11)СНО, мол. м. 202,28; зеленовато желтая жидкость с запахом, напоминающим при разбавлении запах цветов жасмина; т. кип. 153 154°С/10 мм рт. ст.;… … Химическая энциклопедия

      - (3,7 диметил 1,6 октадиен 3 ол) (СН 3)2 С=СНСН 2 СН 2 С(СН 3)(ОН)СН=СН 2, мол. м. 154,24; бесцв. жидкость с запахом ландыша; т. кип. 198 200°С; d4200,8607; nD20 1,4614; давление пара 18,6 Па при 20 °С; раств. в этаноле, пропиленгликоле и … Химическая энциклопедия

      КПВ - клапан перепуска воздуха командир прожекторного взвода Коммунистическая партия Великобритании Коммунистическая партия Венгрии Коммунистическая партия Венесуэлы Коммунистическая партия Вьетнама конституционные пределы взрываемости (мн.ч.)… … Словарь сокращений русского языка

      Трудно горючее вещество - 223. Трудно горючее вещество под воздействием огня или высокой температуры воспламеняется, тлеет или обугливается и продолжает гореть, тлеть или обугливаться при наличии источники зажигания; после удаления источника зажигания горение или тление… … Словарь-справочник терминов нормативно-технической документации

    Под взрывом понимают явление, связанное с выделением большого количества энергии в ограниченном объёме за очень короткий промежуток времени. И если в сосуде воспламенилась горючая газовая смесь, но сосуд выдержал образовавшееся вследствие этого давление, то - это не взрыв, а простое сгорание газов. Если же сосуд разорвался - это взрыв.

    Более того - взрыв, даже если в сосуде не было горючей смеси, а он разорвался, например, вследствие превышения давления воздуха или даже без превышения расчетного давления, или например вследствие потери прочности сосуда в результате коррозии его стенок.

    Если представить шкалу загазованности какого-либо объёма (помещения, сосуда и т.д.) в объёмных процентах от 0% до 100%, то получится, что при загазованности СН4:

    От 0% до 1% - горение невозможно, так как газа, по отношению к воздуху, слишком мало;

    От 1% до 5% - горение возможно, но не устойчиво (концентрация газа небольшая);

    От 5% до 15% (1 вариант) - горение возможно от источника зажигания, и (2 вариант) – горение возможно без источника зажигания (нагрев газовоздушной смеси до температуры самовоспламенения);

    От 15% до 100% - горение возможно, и устойчиво.

    Сам процесс горения может происходить двумя способами:

    От источника зажигания - в данном случае газовоздушная смесь воспламеняется в «точке вноса» источника зажигания. Далее по цепной реакции, газовоздушная смесь поджигает сама себя, образуя «фронт распространения пламени», с направлением движения от источника зажигания;

    Без источника зажигания – в данном случае газовоздушная смесь воспламеняется одновременно (мгновенно) во всех точках загазованного объёма. Отсюда произошли такие понятия как нижний и верхний концентрационные пределы взрываемости газа, так как такое воспламенение (взрыв) возможно только в пределах загазованности от 5% до 15% объёмных.

    Условия, при выполнении которых произойдёт взрыв газа:

    Концентрация газа (загазованность) в газовоздушной смеси от 5% до 15%;

    Закрытый объём;

    Внесение открытого огня или предмета с температурой воспламенения газа (нагрев газовоздушной смеси до температуры самовоспламенения);

    Нижний концентрационный предел самовоспламенения горючих газов (НКПР) - это минимальное содержание газа в газовоздушной смеси, при котором горение происходит без источника зажигания (самопроизвольно). При условии подогрева газовоздушной смеси до температуры самовоспламенения. У метана это примерно 5%, а у пропано-бутановой смеси это примерно 2% газа от объёма помещения.

    Верхний концентрационный предел самовоспламенения горючих газов (ВКПР) - это такое содержание газа в газовоздушной смеси, выше которого смесь становится негорючей без открытого источника зажигания. У метана это примерно 15%, а у пропано-бутановой смеси примерно 9% газа от объёма помещения.

    Процентное отношение НКПР и ВКПР указано при нормальных условиях (Т = 0°С и Р = 101325 Па).

    Сигнальная норма - это 1/5 от НКПР. У метана это 1%, а у пропано-бутановой смеси это 0,4% газа от объёма помещения. Все газосигнализаторы, газоанализаторы и газоиндикаторы до взрывных концентраций настроены на эту сигнальную норму. При обнаружении сигнальной нормы (согласно ПЛА) объявляется АВАРИЯ-ГАЗ. Производятся соответствующие мероприятия. 20% от НКПР берётся для того, чтобы у работников был некоторый запас времени на устранение аварии, либо на эвакуацию. Также указанная сигнальная норма является «точкой» окончания продувки газопроводов газом или воздухом, после проведения различных эксплуатационных работ.