Какая паропроницаемость лучше для утеплителя. Паропроницаемый утеплитель (не экструзионный) пенополистирол Neopor (Неопор) от BASF

Таблица паропроницаемости строительных материалов

Информацию по паропроницаемости я собрал, скомпоновав несколько источников. По сайтам гуляет одна и та же табличка с одними и теми же материалами, но я её расширил, добавил современные значения паропроницаемости с сайтов производителей строительных материалов. Также я сверил значения с данными из документа «Свод правил СП 50.13330.2012» (приложение Т), добавил те, которых не было. Так что на данный момент это наиболее полная таблица.

Материал Коэффициент паропроницаемости,
мг/(м*ч*Па)
Железобетон 0,03
Бетон 0,03
Раствор цементно-песчаный (или штукатурка) 0,09
Раствор цементно-песчано-известковый (или штукатурка) 0,098
Раствор известково-песчаный с известью (или штукатурка) 0,12
Керамзитобетон, плотность 1800 кг/м3 0,09
Керамзитобетон, плотность 1000 кг/м3 0,14
Керамзитобетон, плотность 800 кг/м3 0,19
Керамзитобетон, плотность 500 кг/м3 0,30
Кирпич глиняный, кладка 0,11
Кирпич, силикатный, кладка 0,11
Кирпич керамический пустотелый (1400 кг/м3 брутто) 0,14
Кирпич керамический пустотелый (1000 кг/м3 брутто) 0,17
Крупноформатный керамический блок (тёплая керамика) 0,14
Пенобетон и газобетон, плотность 1000 кг/м3 0,11
Пенобетон и газобетон, плотность 800 кг/м3 0,14
Пенобетон и газобетон, плотность 600 кг/м3 0,17
Пенобетон и газобетон, плотность 400 кг/м3 0,23
Плиты фибролитовые и арболит, 500-450 кг/м3 0,11 (СП)
Плиты фибролитовые и арболит, 400 кг/м3 0,26 (СП)
Арболит, 800 кг/м3 0,11
Арболит, 600 кг/м3 0,18
Арболит, 300 кг/м3 0,30
Гранит, гнейс, базальт 0,008
Мрамор 0,008
Известняк, 2000 кг/м3 0,06
Известняк, 1800 кг/м3 0,075
Известняк, 1600 кг/м3 0,09
Известняк, 1400 кг/м3 0,11
Сосна, ель поперек волокон 0,06
Сосна, ель вдоль волокон 0,32
Дуб поперек волокон 0,05
Дуб вдоль волокон 0,30
Фанера клееная 0,02
ДСП и ДВП, 1000-800 кг/м3 0,12
ДСП и ДВП, 600 кг/м3 0,13
ДСП и ДВП, 400 кг/м3 0,19
ДСП и ДВП, 200 кг/м3 0,24
Пакля 0,49
Гипсокартон 0,075
Плиты из гипса (гипсоплиты), 1350 кг/м3 0,098
Плиты из гипса (гипсоплиты), 1100 кг/м3 0,11
Минвата, каменная, 180 кг/м3 0,3
Минвата, каменная, 140-175 кг/м3 0,32
Минвата, каменная, 40-60 кг/м3 0,35
Минвата, каменная, 25-50 кг/м3 0,37
Минвата, стеклянная, 85-75 кг/м3 0,5
Минвата, стеклянная, 60-45 кг/м3 0,51
Минвата, стеклянная, 35-30 кг/м3 0,52
Минвата, стеклянная, 20 кг/м3 0,53
Минвата, стеклянная, 17-15 кг/м3 0,54
Пенополистирол экструдированный (ЭППС, XPS) 0,005 (СП); 0,013; 0,004 (???)
Пенополистирол (пенопласт), плита, плотность от 10 до 38 кг/м3 0,05 (СП)
Пенополистирол, плита 0,023 (???)
Эковата целлюлозная 0,30; 0,67
Пенополиуретан, плотность 80 кг/м3 0,05
Пенополиуретан, плотность 60 кг/м3 0,05
Пенополиуретан, плотность 40 кг/м3 0,05
Пенополиуретан, плотность 32 кг/м3 0,05
Керамзит (насыпной, т.е. гравий), 800 кг/м3 0,21
Керамзит (насыпной, т.е. гравий), 600 кг/м3 0,23
Керамзит (насыпной, т.е. гравий), 500 кг/м3 0,23
Керамзит (насыпной, т.е. гравий), 450 кг/м3 0,235
Керамзит (насыпной, т.е. гравий), 400 кг/м3 0,24
Керамзит (насыпной, т.е. гравий), 350 кг/м3 0,245
Керамзит (насыпной, т.е. гравий), 300 кг/м3 0,25
Керамзит (насыпной, т.е. гравий), 250 кг/м3 0,26
Керамзит (насыпной, т.е. гравий), 200 кг/м3 0,26; 0,27 (СП)
Песок 0,17
Битум 0,008
Полиуретановая мастика 0,00023
Полимочевина 0,00023
Вспененный синтетический каучук 0,003
Рубероид, пергамин 0 - 0,001
Полиэтилен 0,00002
Асфальтобетон 0,008
Линолеум (ПВХ, т.е. ненатуральный) 0,002
Сталь 0
Алюминий 0
Медь 0
Стекло 0
Пеностекло блочное 0 (редко 0,02)
Пеностекло насыпное, плотность 400 кг/м3 0,02
Пеностекло насыпное, плотность 200 кг/м3 0,03
Плитка (кафель) керамическая глазурованная ≈ 0 (???)
Плитка клинкерная низкая (???); 0,018 (???)
Керамогранит низкая (???)
ОСП (OSB-3, OSB-4) 0,0033-0,0040 (???)

Узнать и указать в этой таблице паропроницаемость всех видов материалов трудно, производителями создано огромное количество разнообразных штукатурок, отделочных материалов. И, к сожалению, многие производители не указывают на своей продукции такую важную характеристику как паропроницаемость.

Например, определяя значение для теплой керамики (позиция «Крупноформатный керамический блок»), я изучил практически все сайты производителей этого вида кирпича, и только лишь у некоторых из них в характеристиках камня была указана паропроницаемость.

Также у разных производителей разные значения паропроницаемости. Например, у большинства пеностекольных блоков она нулевая, но у некоторых производителей стоит значение «0 - 0,02».

Показаны 25 последних комментариев. Показать все комментарии (63).
























Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов .

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

Оборудование

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом


Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости : µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.

Всем известно, что комфортный температурный режим, и, соответственно, благоприятный микроклимат в доме обеспечивается во многом благодаря качественной теплоизоляции. В последнее время ведется очень много споров о том, какой должна быть идеальная теплоизоляция и какими характеристиками она должна обладать.

Существует ряд свойств теплоизоляции, важность которых не вызывает сомнения: это теплопроводность, прочность и экологичность. Совершенно очевидно, что эффективная теплоизоляция должна обладать низким коэффициентом теплопроводности, быть прочной и долговечной, не содержать веществ, вредных для человека и окружающей среды.

Однако есть одно свойство теплоизоляции, которое вызывает массу вопросов – это паропроницаемость. Должен ли утеплитель пропускать водяной пар? Низкая паропроницаемость – достоинство это или недостаток?

Аргументы «за» и «против»

Сторонники ватных утеплителей уверяют, что высокая паропропускная способность – это несомненный плюс, паропроницаемый утеплитель позволит стенам вашего дома «дышать», что создаст благоприятный микроклимат в помещении даже при отсутствии какой-либо дополнительной системы вентиляции.

Адепты же пеноплэкса и его аналогов заявляют: утеплитель должен работать как термос, а не как дырявый «ватник». В свою защиту они приводят следующие аргументы:

1. Стены – это вовсе не «органы дыхания» дома. Они выполняют совершенно иную функцию – защищают дом от воздействия окружающей среды. Органами дыхания для дома является вентиляционная система, а также, частично, окна и дверные проемы.

Во многих странах Европы приточно-вытяжная вентиляция устанавливается в обязательном порядке в любом жилом помещении и воспринимается такой же нормой, как и централизованная система отопления в нашей стране.

2. Проникновение водяного пара сквозь стены является естественным физическим процессом. Но при этом количество этого проникающего пара в жилом помещении с обычным режимом эксплуатации настолько мало, что его можно не брать в расчет (от 0,2 до 3%* в зависимости от наличия/отсутствия системы вентиляции и её эффективности).

* Погожельски Й.А, Каспэркевич К. Тепловая защита многопанельных домов и экономия энергии, плановая тема NF-34/00, (машинопись), библиотека ITB.

Таким образом, мы видим, что высокая паропроницаемость не может выступать в качестве культивируемого преимущества при выборе теплоизоляционного материала. Теперь попробуем выяснить, может ли данное свойство считаться недостатком?

Чем опасна высокая паропроницаемость утеплителя?

В зимнее время годы, при минусовой температуре за пределами дома, точка росы (условия, при которых водяной пар достигает насыщения и конденсируется) должна находиться в утеплителе (в качестве примера взят экструдированный пенополистирол).

Рис.1 Точка росы в плитах ЭППС в домах с облицовкой по утеплителю

Рис.2 Точка росы в плитах ЭППС в домах каркасного типа

Получается, что если теплоизоляция имеет высокую паропроницаемость, то в ней может скапливаться конденсат. Теперь выясним, чем же опасен конденсат в утеплителе?

Во-первых, при образовании в утеплителе конденсата он становится влажным. Соответственно, снижаются его теплоизоляционные характеристики и, наоборот, увеличивается теплопроводность. Таким образом, утеплитель начинает выполнять противоположную функцию – выводить тепло из помещения.

Известный в области теплофизики эксперт, д.т.н., профессор, К.Ф. Фокин заключает: «Гигиенисты рассматривают воздухопроницаемость ограждений как положительное качество, обеспечивающее естественную вентиляцию помещений. Но с теплотехнической точки зрения воздухопроницаемость ограждений скорее отрицательное качество, так как в зимнее время инфильтрация (движение воздуха изнутри-наружу) вызывает дополнительные потери тепла ограждениями и охлаждение помещений, а эксфильтрация (движение воздуха снаружи-вовнутрь) может неблагоприятно отразиться на влажностном режиме наружных ограждений, способствуя конденсации влаги».

Кроме того в СП 23-02-2003 «Тепловая защита зданий» раздел №8 указано, что воздухопроницаемость ограждающих конструкций для жилых зданий должна быть не более 0,5 кг/(м²∙ч).

Во-вторых , вследствие намокания теплоизолятор утяжеляется. Если мы имеем дело с ватным утеплителем, то он проседает, и образуются мостики холода. К тому же возрастает нагрузка на несущие конструкции. Через несколько циклов: мороз – оттепель такой утеплитель начинает разрушаться. Чтобы защитить влагопроницаемый утеплитель от намокания его прикрывают специальными пленками. Возникает парадокс: утеплитель дышит, но ему требуется защита полиэтиленом, либо специальной мембраной, которая сводит на нет все его «дыхание».

Ни полиэтилен, ни мембрана не пропускают молекулы воды в утеплитель. Из школьного курса физики известно, что молекулы воздуха (азот, кислород, углекислый газ) размером больше, чем молекула воды. Соответственно, воздух также не способен проходить через подобные защитные пленки. В итоге мы получаем помещение с дышащим утеплителем, но покрытое воздухонепроницаемой пленкой – своеобразную теплицу из полиэтилена.

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2. ч. Па/мг ) нормируется в главе 6 "Сопротивление паропроницанию ограждающих конструкций" СНиП II-3-79 (1998) "Строительная теплотехника".

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) - 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 "Теплотехнические свойства строительных материалов и изделий - Определение паропроницаемости". Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO , котрые определяют паропроницаемость "сухих" строительных материалов при влажности менее 70% и "влажных" строительных материалов при влажности более 70%. Помните, что при оставлении "пирогов" паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет "замокание" внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. - м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Показатели паропроницаемости "сухих" строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости "влажных" строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.


1. Минимизировать отбор внутреннего пространства может только утеплитель с наименьшим коэффициентом теплопроводности

2. К сожалению аккумулирующую теплоемкость массива наружной стены мы теряем навсегда. Но здесь есть свой выигрыш:

А) нет необходимости тратить энергоресурсы на нагрев этих стен

Б) при включении даже самого маленького обогревателя в помещении почти сразу станет тепло.

3. В местах соединения стены и перекрытия „мостики холода” можно убрать, если утеплитель наносить частично и на плиты перекрытия с последующим декорированием этих примыканий.

4. Если Вы все еще верите в "дыхание стен", то ознакомьтесь, пожалуйста с ЭТОЙ статьей. Если нет, то тут очевидный вывод: теплоизоляционный материал должен очень плотно быть прижат к стене. Еще лучше, если утеплитель станет единым целым со стеной. Т.е. между утеплителем и стеной не будет никаких зазоров и щелей. Таким образом влага из помещения не сможет попасть в зону точки росы. Стена всегда будет оставаться сухой. Сезонные колебания температур без доступа влаги не будут оказывать негативного влияния на стены, что увеличит их долговечность.

Все эти задачи может решить только напыляемый пенополиуретан.

Обладая самым низким коэффициентом теплопроводности из всех существующих теплоизоляционных материалов, пенополиуретан займет минимум внутреннего пространства.

Способность пенополиуретана надежно прилипать к любым поверхностям позволяет легко нанести его на потолок для уменьшения "мостиков холода".

При нанесении на стены пенополиуретан, находясь некоторое время в жидком состоянии, заполняет все щели и микрополости. Вспениваясь и полимеризуясь непосредственно в точке нанесения пенополиуретан становится единым целым со стеной, перекрывая доступ разрушительной влаге.

ПАРОПРОНИЦАЕМОСТЬ СТЕН
Сторонники лжеконцепции «здорового дыхания стен» помимо греха против истины физических законов и осознанного введения в заблуждение проектировщиков, строителей и потребителей, исходя из меркантильного побуждения, сбыть свой товар какими угодно методами, наговаривают и возводят поклеп на теплоизоляционные материалы с низкой паропроницаемостью (пенополиуретан) или теплоизоляционный материал и вовсе паронепроницаемый (пеностекло).

Суть этой злостной инсинуации сводится к следующему. Вроде как, если не будет пресловутого «здорового дыхания стен», то в таком случае внутреннее помещение обязательно станет сырым, а стены будут сочиться влагой. Дабы развенчать эту выдумку давайте посмотрим более внимательно на те физические процессы, которые будут происходить в случае облицовки под штукатурный слой или использовании внутри кладки, например такого материала как пеностекло, паропроницаемость которого равна нулю.

Итак, из-за присущих пеностеклу теплоизоляционных и герметизирующих свойств наружный слой штукатурки или кладки придет в равновесное температурное и влажностное состояние с наружной атмосферой. Также и внутренний слой кладки войдет в определенный баланс с микроклиматом внутренних помещений. Процессы диффузии воды, как в наружном слое стены, так и во внутреннем; будут носить характер гармонической функции. Эта функция будет обуславливаться, для наружного слоя, суточными перепадами температур и влажности, а также сезонными изменениями.

Особенно интересно в этом отношении поведение внутреннего слоя стены. Фактически, внутренняя часть стены будет выступать в роли инерционного буфера, роль которого сглаживать резкие изменения влажности в помещении. В случае резкого увлажнения помещения, внутренняя часть стены будет адсорбировать излишнюю влагу, содержащуюся в воздухе, не давая влажности воздуха достичь предельного значения. В тоже время, при отсутствии выделения влаги в воздух в помещении, внутренняя часть стены начинает высыхать при этом, не давая воздуху «пересохнуть» и уподобится пустынному.

Как благоприятный результат подобной системы утепления с использованием пенополиуретана гармоника колебания влажности воздуха в помещении сглаживается и тем самым гарантирует стабильное значение (с незначительными флуктуациями) приемлемой для здорового микроклимата влажности. Физика данного процесса достаточно хорошо изучена развитыми строительными и архитектурными школами мира и для достижения подобного эффекта при использовании волоконных неорганических материалов в качестве утеплителя в закрытых системах утепления настоятельно рекомендуется наличие надежного паронипроницаемого слоя на внутренней стороне системы утепления. Вот вам и «здоровое дыхание стен»!