Митохондриальная дыхательная цепь и окислительное фосфорилирование. Для чего образуются восстановленные НАД и ФАД? Содержат ферменты окислительного фосфорилирования

Окислительное фосфорилирование - один из важнейших компонентов клеточного дыхания, приводящего к получению энергии в виде АТФ Субстратами окислительного фосфорилирования служат продукты расщепления органических соединений - белки жиры и углеводы. Процесс окислительного фосфорилирования проходит на кристах митохондрий.

Однако чаще всего в качестве субстрата используются углеводы Так, клетки головного мозга не способны использовать для питания никакой другой субстрат, кроме углеводов.

Предварительно сложные углеводы расщепляются до простых, вплоть до образования глюкозы. Глюкоза является универсальным субстратом в процессе клеточного дыхания. Окисление глюкозы подразделяется на 3 этапа:

Гликолиза

Окислительное декарбоксилирование и цикл Кребса

Окислительное фосфорилирование.

При этом гликолиз является общей фазой для аэробного и анаэробного дыхания.

Для синтеза 1 молекулы АТФ необходимо 3 протона

У животных, растений и грибов окислительное фосфорилирование протекает в специализированных субклеточных структурах-митохондриях

46. Биохимические механизмы разобщения окисления и фосфорилирования факторы их вызывающие
Разобщение дыхания и фосфорилирования

Некоторые химические вещества (протонофоры) могут переносить протоны или другие ионы (ионофоры) из межмембранного пространства через мембрану в матрикс, минуя протонные каналы АТФ-синтазы. В результате этого исчезает электрохимический потенциал и прекращается синтез АТФ. Это явление называют разобщением дыхания и фосфорилирования. В результате разобщения количество АТФ снижается, а АДФ увеличивается. В этом случае скорость окисления NADH и FADH2возрастает, возрастает и количество поглощённого кислорода, но энергия выделяется в виде теплоты, и коэффициент Р/О резко снижается. Как правило, разобщители - липофильные вещества, легко проходящие через липидный слой мембраны. Одно из таких веществ - 2,4-динитрофенол (рис. 6-17), легко переходящий из ионизированной формы в неионизированную, присоединяя протон в межмембранном пространстве и перенося его в матрикс.

Примерами разобщителей могут быть также некоторые лекарства, например дикумарол - антикоагулянт (см. раздел 14) или метаболиты, которые образуются в организме, билирубин - продукт катаболизма тема (см. раздел 13), тироксин - гормон щитовидной железы (см. раздел 11). Все эти вещества проявляют разобщающее действие только при их высокой концентрации.

Выключение фосфорилирования по исчерпании АДФ либо неорганического фосфата сопровождается торможением дыхания (эффект дыхательного контроля). Большое число повреждающих митохондриальную мембрану воздействий нарушает сопряжение между окислением и фосфорилированием, разрешая идти переносу электронов и в отсутствие синтеза АТФ (эффект разобщения)

1. Суммарный выход:

Для синтеза 1 молекулы АТФ необходимо 3 протона.

2. Ингибиторы окислительного фосфорилирования:

Ингибиторы блокируют V комплекс:

Олигомицин - блокируют протонные каналы АТФ-синтазы.

Атрактилозид, циклофиллин - блокируют транслоказы.

3. Разобщители окислительного фосфорилирования:

Разобщители - липофильные вещества, которые способны принимать протоны и переносить их через внутреннюю мембрану митохондрий минуя V комплекс(его протонный канал). Разобщители:

Естественные - продукты перекисного окисления липидов, жирных кислот с длинной цепью; большие дозы тиреоидных гормонов.

Искусственные - динитрофенол, эфир, производные витамина К, анестетики.

47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках

Свободные радикалы в химии - частицы (как правило, неустойчивые), содержащие один или несколько неспаренных электронов на внешней электронной оболочке. По другому определению свободный радикал - вид молекулы или атома, способный к независимому существованию (то есть обладающий относительной стабильностью) и имеющий один или два неспаренных электрона. Неспаренный электрон занимает атомную или молекулярную орбиталь в одиночку. Как правило, радикалы обладают парамагнитными свойствами, так как наличие неспаренных электронов вызывает взаимодействие с магнитным полем. Кроме этого наличие неспаренного электрона способно значительно усилить реакционную способность, хотя это свойство радикалов широко варьируется.

Образование

Радикал может образоваться в результате потери

или при получении одного электрона нерадикальной молекулой:

Большинство радикалов образуются в ходе химических реакций при гомолитической диссоциации связей. Они сразу же претерпевают дальнейшие превращения в более устойчивые частицы:

Зарождение радикальной цепи можно инициировать действием на вещество жестких условий (высокие температуры, электромагнитное излучение, радиация). Многие перекисные соединения - также хорошие радикалообразующие частицы.

Антиоксиданты (антиокислители, консерванты) - ингибиторы окисления, природные или синтетические вещества, способные замедлять окисление (рассматриваются преимущественно в контексте окисления органических соединений).

Основной внутренний источник опасности для клеточного гомеостаза анаэробных огранизмов - это интермидиаты, участвующие в передаче кислорода, и продукты, образованные в результате метаболизма кислорода. Анаэробные организмы в процессе эволюции выработали хорошо отрегулированные механизмы для нейтрализации окислительных эффектов кислорода и его активных метаболитов. Эти самоподдерживающиеся защитные компоненты называют "антиокислительными системами защиты" .

Механизмы действия

Окисление углеводородов, спиртов, кислот, жиров и других веществ свободным кислородом представляет собой цепной процесс. Цепные реакции превращений осуществляются с участием активных свободных радикалов - перекисных (RO 2 *), алкоксильных (RO *), алкильных (R *), а также активных форм кислорода (супероксид анион, синглетный кислород). Для цепных разветвлённых реакций окисления характерно увеличение скорости в ходе превращения (автокатализ). Это связано с образованием свободных радикалов при распаде промежуточных продуктов - гидроперекисей и др.

Механизм действия наиболее распространённых антиоксидантов (ароматические амины, фенолы, нафтолы и др.) состоит в обрыве реакционных цепей: молекулы антиоксиданта взаимодействуют с активными радикалами с образованием малоактивных радикалов. Окисление замедляется также в присутствии веществ, разрушающих гидроперекиси (диалкилсульфиды и др.). В этом случае падает скорость образования свободных радикалов. Даже в небольшом количестве (0,01-0,001 %) антиоксиданты уменьшают скорость окисления, поэтому в течение некоторого периода времени (период торможения, индукции) продукты окисления не обнаруживаются. В практике торможения окислительных процессов большое значение имеет явление синергизма - взаимного усиления эффективности антиоксидантов в смеси, либо в присутствии других веществ.

Окислительное фосфорилирование происходит в дыхательной цепи переноса электронов, функционирующей на внутренней мембране митохондрий. Приводит к синтезу АТФ и является конечным этапом клеточного дыхания.

При гликолизе и в цикле Кребса происходит отщепление атомов водорода от промежуточных продуктов реакций. Водород соединяется с НАД и ФАД, в результате образуются НАД · H 2 и ФАД · H 2 , которые поступают в дыхательную цепь. Здесь водород в конечном итоге окисляется молекулярным кислородом до воды. Одновременно с этим происходит фосфорилирование большого количества молекул АДФ до АТФ.

Окислительное фосфорилирование есть процесс многоступенчатый. Водород отделяется от НАД · H 2 и ФАД · H 2 , после чего передается по цепи переносчиков: флавопротеин, кофермент Q (убихинон), цитохромы. И только в конце своего пути он соединяется с кислородом. При этом переносчики претерпевают ряд окислительно-восстановительных реакций.

В нескольких местах дыхательной цепи при переходе атомов водорода и электронов от одного переносчика к другому выделяется энергия в количестве достаточном для синтеза АТФ.

На первых участках цепи переносится водород на наружную сторону мембраны, на последних - электроны с помощью цитохромов.

Пара цитохромов представляет собой белковые пигменты с железосодержащей группой - гемом. При окислительно-восстановительных реакциях железо оказывается попеременно в окисленной (Fe 3+) или восстановленной (Fe 2+) форме.

Последний цитохром в цепи содержит медь, он катализирует восстановление молекулярного кислорода до воды.

Перенос водорода и электронов по дыхательной цепи

НАД (никотинамидадениндинуклеотид) и НАДФ (никотинамидадениндинуклеотидфосфат) - коферменты, производные никотиновой кислоты. Первый отличается от второго отсутствием остатка фосфорной кислоты при молекуле рибозы. Эти молекулы электроположительны, так как у них отсутствует один электрон. Поэтому могут переносить как электроны, так и атомы водорода. Акцептируется пара атомов водорода, при этом один диссоциирует на протон и электрон. Хотя часто пишут НАД(Ф) · H 2 , но свободный протон оказывается не связанным с молекулой, а находится в среде: НАД · H + Н + .

При переносе водорода от НАД к флавопротеину происходит первый синтез АТФ в дыхательной цепи.

Водород переносится флавопротеином в виде целых атомов. Кофермент Q принимает водород от флавопротеина и передает его первому цитохрому (b). Цитохромы переносят только электроны с помощью входящего в их состав атома железа, который восстанавливается из Fe 3+ в Fe 2+ . Поэтому водород распадается на ион H + и e - . Ионы водорода оказываются в окружающей среде с внешней стороны внутренней митохондриальной мембраны.

При передаче электронов по цепи цитохромов происходит синтез АТФ. Последний цитохром передает электроны молекулярному кислороду, который превращается в отрицательно заряженный анион.

Между наружной поверхностью внутренней мембраны, где накапливаются катионы водорода (H +), и внутренней поверхностью мембраны, где накапливаются анионы кислорода (O 2 -), возникает разность потенциалов. В мембрану встроен фермент АТФ-синтетаза, благодаря которому образуется АТФ. Когда разность потенциалов достигает критической величины, H + перемещаются через канал фермента. За счет энергии этого перемещения происходит синтез АТФ, а кислород присоединяет ионы водорода с образованием воды.

лок, содержащий железо и серу(железосерный белок). Последним в ряду переносчиков электронов стоит комплекс– цитохром аа3 , называемый цитохромоксидазой, поскольку он переносит электроны прямо на кислород. В процессе передачи электронов с цитохромоксидазы на молекулярный кислород вместе с двумя железопорфириновыми группами участвуют связанные с железопорфирином атомы меди, что сопровождается обратимым изменением их валентности (Cu2+ – Сu1+ ). Электроны последовательно присоединяются к атомам железа цитохромокcидазы, затем к атомам меди, и, наконец, попадают на кислород; поступающий в митохондрии из крови кислород связывается с атомами железа в геме цитохрома «а3 » в форме молекулы О2, (подобно тому, как он связывается с гемоглобином). Каждый из атомов молекулы кислорода присоединяет последовательно два электрона, и два протона, превращаясь в две молекулы воды:

О2 + 4е- + 4Н+ à 2Н2 О или ½О2 + 2е- + 2Н+ à Н2 О

Весь процесс митохондриального тканевого дыхания можно изобразить в виде следующей схемы:

НАД.Н2 ФП.Н2

2 Н+

Fe2+

/2 О 2

2c 1

2а3

KoQ.H2

/2 О 2

Ф+АДФ АТФ

6.4. Окислительное фосфорилирование

Процесс переноса протонов и электронов по дыхательной цепи, локализованной во внутренней мембране митохондрий, к конечному акцептору электронов – молекулярному кислороду – сопровождается очень большим уменьшением свободной энергии. Иначе говоря, передвигаясь от одного переносчика электронов к другому, электроны опускаются, на все более низкие энергетические уровни, отдавая порциями свою энергию. Поскольку известны вели-

чины редокс-потенциалов системы НАД.Н – НАД+ (Е = - 0,32 вольта) и сис-

темы Н2 О – ½О2 (Е0 =+0,81), можно рассчитать изменение стандартной сво-

168 6. Биологическое окисление

бодной энергии для случая, когда пара электронов переносится от НАД.Нк

молекулярному кислороду (т.е. проходит вcю дыхательную цепь), используя формулу:

D G ° " = nFD Е

где D G0’ – стандартное изменение свободной энергии в калориях; n – число переносимых электронов;

F – число Фарадея, равное 23062 ккал;

D E0 – разность редокс-потенциалов акцептора и донора электронов.

В нашем случае D G0’ =2×23062×1,13=52,12 ккал (218,22 кДж). Таким обра-

зом, при каждом переносе пары электронов с восстановленного пиридинпротеида (с НАД.Н2 ) на кислород выделяется 52,12 ккал (218,2 кДж) энергии.

При сопоставлении этой величины с величиной стандартной свободной энергии образования АТФ из АДФ и фосфата, равной 7,3 ккал (30,4 кДж) очевидно, что уменьшение свободной энергии при переносе одной пары электро-

нов от НАД.Н на кислород достаточно велико для того, чтобы обеспечить

возможность образования нескольких молекул АТФ из АДФ и фосфата при условии наличия соответствующего механизма сопряжения фосфорилирования АДФ с окислительным процессом в дыхательной цепи.

При рассмотрении энергетики дыхательной цепи оказалось, что в дыхательной цепи имеются три участка, в которых перенос электронов сопровождается относительно большим изменением стандартной свободной энергии (т.е. высвобождением энергии), превышающим величину стандартной свободной энергии образования АТФ из АДФ и фосфата. Такими участками явились: участок между флавопротеидом и КоQ, участок между цитохромом «в» и цитохромом «с» и участок между цитохромом «а» и цитохромом «а3 ». Уменьшение свободной энергии на этих участках составляет9,9-23,8 ккал (40-99,6 кДж), что значительно превышает величину стандартной свободной энергии образования АТФ из АДФ и фосфата, равную 7,3 ккал (30,4 кДж). В других участках дыхательной цепи уменьшение свободной энергии не столь выражено и, по-видимому, не может обеспечить образование молекулы АТФ.

Таким образом, митохондриальная дыхательная цепь напоминает каскадное устройство, поставляющее клетке свободную энергию определёнными порциями.

Идея о наличии сопряжения фосфорилирования АДФ и тканевого дыхания впервые была высказана советским ученым В.А. Энгельгардтом в начале 30-х годов. Впоследствии исследованиями В.А. Белицера, Очоа, Лумис и Липман, Кеннеди и Ленинджера, Митчела, С.Е. Северина, В.П. Скулачева и др. была в значительной мере раскрыта сущность этого процесса.

Установлено, что сопряжёно с передачей протонов и электронов по окис- лительно-восстановительной цепи ферментов осуществляется важнейший для жизнедеятельности организмов процесс-синтез АТФ из АДФ и Н3 РО4 , т.е. высвобождающаяся при тканевом дыхании энергия трансформируется в энергию фосфатной связи АТФ. Этот процесс получил название«окислительное фосфорилирование» и служит для аккумуляции в макроэргических связях АТФ около 40% всей энергии, освобождающейся в процессе тканевого дыхания.

При окислительном фосфорилировании с помощью дыхательной цепи и сопряжено с транспортом протонов и электронов по всей цепи происходит активирование неорганического фосфата и передача его затем на АДФ с образованием АТФ.

Активирование фосфата происходит на описанных выше трех участках митохондриальной дыхательной цепи, характеризующихся повышенным высвобождением свободной энергии.

В случае окисления субстратов пиридиновых дегидрогеназ и восстановленных пиридинпротеидов на каждую пару атомов водорода, поступившую в дыхательную цепь и окислившихся до Н2 О, синтезируется три молекулы АТФ, что связано с указанными тремя участками активирования неорганического фосфата и синтезом на каждом из них АТФ из АДФ и активированного фосфата. В случае окисления субстратов флавиновых ферментов(например, янтарной кислоты) и восстановленных флавопротеидов образуется2 молекулы АТФ, что объясняется выпадением первого участка активирования(участка между флавопротеидом и КоQ).

Величина фосфорилирования выражается показателем эффективности окислительного фосфорилирования, характеризующегося отношением:

количество этерифицированного фосфата (вm аР)

количество связанного кислорода (вm аО)

Это отношение, называемое коэффициентом фосфорилирования и обозначаемое как Р/O, оказывается различным в зависимости от подвергающегося окислению субстрата и способа получения митохондрий. Для истинного фосфорилирования, обусловленного реакциями в дыхательной цепи, отношение Р/О равняется 3 (в этом случае происходит окисление восстановленного НАД и субстратов НАД-дегидрогеназы) и 2 (в этом случае происходит окисление восстановленных флавопротеидов и субстратов флавиновых ферментов).

Процесс окислительного фосфорилирования протекает внутри митохондрий – субклеточных частичках специфического строения. В клетках их может находиться от нескольких сотен до нескольких десятков тысяч. Характерной особенностью строения митохондрий является наличие у них двух мембран, из которых внутренняя имеет большую протяженность и образует выпячивания

(кристы), погруженные во внутреннее основное вещество митохондрий, называемое матриксом. Толщина наружной мембраны составляет приблизительно 7,0 нм, а внутренней мембраны – 5,0-5,5 нм.

Внутренняя поверхность внутренней мембраны покрыта расположенными в определенном порядке частицами сферической формы(диаметром 8,0-9,0 нм), получивших название элементарных структурных единиц.

Мембраны состоят из липидов(1/3 часть) и белков (2/3 части), матрикс представляет собой студнеобразную, полужидкую массу, состоящую приблизительно на 50% из белка. Около 20-25% общего белка внутренней мембраны составляют белки ферментов, участвующих в образовании дыхательной цепи

и окислительного фосфорилирования, тогда как остальные белки являются структурными.

Дыхательные ансамбли, состоящие из флавопротеидов, убихинона, железосерных белков и цитохромов, располагаются в плоскости внутренней мембраны митохондрий, в основании элементарных структурных единиц, которые представляют собой, по современным воззрениям, АТФ-азную систему

(АТФ-синтетазу), включающую особые белкиF1 – F0 (факторы сопряжения), обеспечивающие фосфорилирование АДФ в АТФ в процессе переноса электронов по дыхательной цепи. Дыхательные ансамбли равномерно распределены по плоскости внутренней мембраны.

Внутри митохондрий находятся также ферменты лимоннокислого цикла, окислительного декарбоксилирования пировиноградной кислоты, β-окисления жирных кислот, орнитинового цикла и др.

Реакции лимоннокислого цикла, процессы переноса электронов по дыхательной цепи и окислительного фосфорилирования происходят внутри митохондрий или на внутренней поверхности внутренней мембраны. Поэтому молекулы фосфата, АДФ, субстраты лимоннокислого цикла и тканевого дыхания, прежде чем подвергнуться окислению, должны сначала проникнуть

внутрь митохондрий. Однако внутренняя мембрана непроницаема для катионов Na+ , К+ , Мg+ , анионов С1- , Вr- , NO3 - , Н+ , сахаров (таких как сахароза), большинства аминокислот, окисленных и восстановленных НАД и НАДФ, нуклеозид-5-моно-, ди- и трифосфатов (в том числе АДФ и АТФ), коэнзима А

и его эфиров.

Внутренняя мембрана проницаема только для воды, для небольших нейтральных молекул, таких как мочевина и глицерин, для жирных кислот с короткой цепью.

Оказалось, что для переноса специфических метаболитов через мембрану внутренняя мембрана содержит несколько ферментоподобных соединений (пермеаз или транслоказ). Такие переносчики идентифицированы для АДФ и АТФ, для фосфата и для некоторых промежуточных продуктов лимоннокисло-

го цикла (сукцината, малата, изоцитрата, цитрата, цис-аконитата), а также для глутамата и аспартата.

Благодаря этим переносчикам осуществляется сложный двусторонний обмен промежуточными продуктами лимоннокислого цикла, фосфатом, АДФ и АТФ между цитоплазмой и внутренним отделением митохондрий. В частности, благодаря функционированию АДФ-АТФ-переносчика, требуемое для окислительного фосфорилирования количество АДФ входит внутрь митохондрий через внутреннюю мембрану, а одновременно эквимолекулярное количество АТФ выходит из нее в цитоплазму.

Протоны и электроны цитоплазматического НАД.Н (образовавшегося, к

примеру, на окислительной стадии расщепления глюкозы в цитоплазме) могут поступать внутрь митохондрий непрямым путем, без переноса самих молекул НАД. Это осуществляется с помощью глицерофосфатного или малатного челночного механизма. Предполагают, что существует также лактатный челночный механизм.

Аналогичный механизм осуществляется для перемещения протонов и электронов из митохондрий в цитоплазму(что происходит, к примеру, при биосинтезе глюкозы из пирувата в цитоплазме).

Сущность глицерофосфатного челночного механизма сводится к следующему. Цитоплазматический НАД.Н2 сначала реагирует с цитоплазматическим фосфодиоксиацетоном (одним из промежуточных продуктов гликолиза), образуя глицерофосфат. Эта реакция катализируется НАД-зависимой цитоплазматической глицерофосфатдегидрогеназой.

цитоплазматическая

глицерофосфат-

НАД.Н2

дегидрогеназа.

Образовавшийся глицерофосфат способен легко проникать через митохондриальные мембраны внутрь митохондрий, где внутримитохондриальная флавин-зависимая глицерофосфатдегидрогеназа снова окисляет глицерофосфат до фосфодиоксиацетона:

6. Биологическое окисление

митохондриальная

глицерофосфат-

дегидрогеназа.

ФАД.Н2

CH2 OH

Восстановленный флавопротеид вводит приобретенные им электроны в дыхательную цепь (на КоQ), обеспечивая окислительное фосфорилирование двух молекул АДФ, а фосфодиоксиацетон выходит из митохондрий в цитоплазму, где снова может служит акцептором электронов для новой молекулы цитоплазматического НАД.Н2 . Высказывается также мнение: окисление ФП.Н2 не приводит к образованию2 молекул АТФ, а приводит к высвобождению энергии в виде тепла.

Малатный челночный механизм включает систему промежуточных - со единений: оксалоацетат – малат. Цитоплазматический НАД.Н2 сначала реагирует с оксалоацетатом при участии цитоплазматической малатдегидрогеназы, образовавшийся малат с помощью транслоказы переносится внутрь митохондрий, где под влиянием митохондриальной дегидрогеназы дегидрируется. Об-

разовавшийся НАД.Н окисляется флавопротеидом дыхательной цепи мито-

хондрий, путем окислительного фосфорилирования образуется три молекулы АТФ. Полагают, что малатный челночный механизм является наиболее активным механизмом переноса восстановительных эквивалентов из цитоплазмы в митохондрии.

Для объяснения механизма окислительного фосфорилирования существует три гипотезы, а именно: гипотеза химического сопряжения, гипотеза хемиосмотического сопряжения и гипотеза механохимического или конформационного сопряжения окисления и фосфорилирования.

В основе гипотезы химического сопряжения лежит представление, согласно которому передача энергии, выделяемой в процессе переноса электронов по дыхательной цепи на АДФ с образованием АТФ, осуществляется в серии последовательных реакций, связанных общими промежуточными продуктами, содержащими макроэргические связи.

По поводу возможной химической природы переносчиков существуют разные суждения. Эту роль приписывают НАД, убихинону, витаминам К и Е, пептиду карнозину, адениловой части молекулы АТФ, карбоксильным и имидазольным радикалам полипептидной цепи белка и др. Предполагают, что в разных точках фосфорилирования в дыхательной цепи могут действовать различные переносчики.

Однако до сих пор не удалось доказать реальное существование и идентифицировать постулированные переносчики.

Обнаружение окислительного фосфорилирования лишь в митохондриях, у которых сохранена структура мембран, повысило интерес к двум другим гипотезам.

Было высказано предположение согласно механохимической гипотезе, что энергия, высвобождающаяся в дыхательной цепи, используется непосредственно для перевода внутренней мембраны(ее белков) в новое богатое энергией конформационное состояние, которое, в свою очередь, становится движущей силой окислительного фосфорилирования, приводящего к образованию АТФ.

В настоящее время наиболее серьезное обоснование получила гипотеза хеми-осмотического сопряжения, предложенная Митчелом в 1961 году и получившая развитие в исследованиях советского ученого. ВСкулачева.П (1972 г.). В 1978 г. Митчелу за разработку хеми-осмотической гипотезы была присуждена Нобелевская премия.

Исходя из того, что митохондриальная мембрана является существенным элементом механизма окислительного фосфорилирования и что она непроницаема для ионов водорода (Н+ ), согласно хемиосмотической гипотезы предполагается, что при тканевом дыхании в процессе движения электронов вдоль дыхательной цепи каждая пара электронов, поставляемая НАД.Н2 , трижды пересекает мембрану митохондрий и в итоге переносит три пары протонов из внутренней части митохондрий через мембрану наружу(в межмембранное пространство). В результате транслокации протонов через мембрану на внутренней мембране возникает протонный градиент, представляющий собой форму запасания свободной энергии. Общая энергия протонного градиента складывается из концентрационного (или осмотического) компонента, определяемого разницей рН по обеим сторонам мембраны, и электрического компонента, обусловленного движением положительно заряженных протонов через мембрану (разница рН примерно=1,4 единицы, электрический потенциал– около 140 мВ.). Из-за разницы в концентрационном и электрическом потенциале протоны, вынесенные из митохондрий, стремятся пересечь мембрану в обратном направлении. Обратное движение протонов через мембрану(через протонные каналы – белок Fо) под влиянием протонного градиента способно привести к работе, такой как фосфорилирование: АДФ+Ф® АТФ+НОН. Предполагается, что два протона, переносимые под влиянием градиента белком Fо через мембрану (через протонный канал) взаимодействуют с одним из кислородов фосфата, связанного с белкомF1 ферментного комплекса F1 – F0 АТФ-синтетазы, что приводит к высвобождению кислорода с образованием воды и делает фосфатную группу высокореактивной и способной связываться с АДФ с образованием АТФ. Установлено, что на каждые два протона, пересе-

кающих комплекс F1 – F0 образуется одна молекула АТФ из АДФ и активированного описанным способом неорганического фосфата.

Характерная особенность рассмотренной гипотезы состоит в том, что образование АТФ в процессе окислительного фосфорилирования происходит без участия высокоэнергетических промежуточных продуктов. Роль промежуточного звена, движущей силой процесса служит электрохимический потенциал (протонный градиент), возникающий на мембране митохондрий за счет энергии, выделяемой в процессе переноса электронов по дыхательной цепи. Согласно наблюдениям В.П. Скулачева, в процессе дыхания на мембране митохондрий, хлоропластов и бактерий действительно возникает мембранный потенциал, достаточный для энергетического обеспечения реакции синтеза АТФ из АДФ и фосфата.

Следует, однако, сказать, что ряд молекулярных механизмов окислительного фосфорилирования в мембранах митохондрий все еще не ясны(механизм

переноса Н на наружную поверхность внутренней мембраны, механизм использования энергии АТФ-синтетазой).

Не следует думать, что любое окисление органических соединений в живых организмах сопряжено с фосфорилированием, так же как и фосфорилирование не обязательно должно быть окислительным. В настоящее время известно несколько сот реакций окисления, но менее десятка их сопряжено с одновременным активированием неорганического фосфата.

Кроме окислительного фосфорилирования различают также субстратное фосфорилирование.

Реакции расщепления субстрата, сопровождающиеся передачей энергии непосредственно неорганическому фосфату с образованием в результате этого другого фосфорилированного субстрата с макроэргической связью, называют субстратным фосфорилированием. В этом случае не участвует дыхательная цепь ферментов и не происходит превращения энергии, выделяемой в процессе переноса электронов на кислород, в энергию фосфатной связи АТФ.

В качестве примера субстратного фосфорилирования можно привести реакцию превращения сукцинил-КоА в янтарную кислоту с образованием ГТФ из ГДФ и фосфата и последующего образования АТФ, имеющее место в лимоннокислом цикле.

Биосинтез АТФ в животном организме осуществляется из АДФ и неорганического фосфата при активировании последнего за счет энергии окисления органических соединений при метаболических процессах в организме.

Другим источником энергии для активирования неорганического фосфата в живом организме и обеспечения синтеза АТФ может служить энергия солнечного света, улавливаемая фотосинтетическим аппаратом клетки. Такое фосфорилирование называют фотосинтетическим. Оно свойственно растениям.

Наконец, энергия для тех же целей может поступать за счет реакций окисления неорганических соединений. Сопряженное с окислением неорганических веществ фосфорилирование называется хемосинтетическим. Оно свойственно некоторым видам микробов.

Объем окислительного фосфорилирования в значительной мере зависит от проницаемости мембраны митохондрий. Митохондриальная мембрана может пропускать внутрь митохондрий посредством глицерофосфатного или малатного челночного механизма большее или меньшее количество восстановительных эквивалентов с НАД*Н2 , которые включаются здесь в процессы окислительного фосфорилирования, тогда как на поверхности митохондрий в цитоплазме НАД.Н2 окисляется свободно, при этом не образуется АТФ, а выделяющаяся энергия превращается в тепло. Однако и внутри митохондрий может произойти переключение с окисления, сопряженного с фосфорилированием, на свободное окисление (и обратно), сопровождаемое образованием тепла. Это происходит при разобщении переноса электронов и фосфорилирования в дыхательной цепи, что может произойти, в частности, при понижении температуры или воздействии некоторых химических веществ(замещенных фенолов, к примеру, 2,4-динитрофенола, фенилгидразонов, грамицидина, арсената, дикумарола, тироксина и др.). Следует заметить, что действие химических разобщителей (так называемых ионофоров), способных нивелировать протонный градиент путем переноса протонов через мембрану митохондрий в обратном направлении – в матрикс, послужило важным доказательством хеми-осмоти- ческой гипотезы сопряжения фосфорилирования и тканевого дыхания. Значительные исследования в этой области были выполнены В.П. Скулачёвым.

В.П. Скулачевым также была продемонстрирована теплообразующая функция митохондрий при многократном охлаждении организма. У новорожденных и у некоторых животных, впадающих в зимнюю спячку, выявлены специализированные митохондрии, которые обычно не синтезируют АТФ, а свободная энергия переноса электронов рассеивается в виде тепла, благодаря чему и поддерживается температура тела на должном уровне. Такие митохондрии обнаружены в буром жире. Энергия переноса электронов может использоваться и для других целей, в частности, для поддержания концентрации ионов Са ++ в клетке, что важно для осуществления многих клеточных функций.

Интенсивность окислительного фосфорилирования регулируется соотношением в клетке содержания АТФ, с одной стороны, и АДФ и неорганического фосфата, с другой. Причем, два последних вещества активируют процесс

окислительного фосфорилирования. При усилении распада АТФ на АДФ и Н3 РО4 в процессе реакций, идущих с потреблением энергии, и накопления последних в клеточном содержимом, автоматически усиливается окислительное фосфорилирование, т.е. биосинтез АТФ.

На основании строения и функций компонентов дыхательной цепи предложен механизм окислительного фосфорилирования:

1. Ферменты дыхательной цепи расположены в строго определенной последовательности : каждый последующий белок обладает большим сродством к электронам, чем предыдущий (он более электроположителен, т.е. обладает более положительным окислительно-восстановительным потенциалом). Это обеспечивает однонаправленное движение электронов.

2. Все атомы водорода, отщепленные дегидрогеназами от субстратов в аэробных условиях, достигают внутренней мембраны митохондрий в составе НАДН или ФАДН 2 .

Строение дыхательной цепи и механизм окислительного фосфорилирования

3. Здесь атомы водорода (от НАДН и ФАДН 2) передают свои электроны в дыхательную ферментативную цепь, по которой электроны движутся (50-200 шт/сек) к своему конечному акцептору – кислороду. В результате образуется вода .

4. Поступающие в дыхательную цепь электроны богаты свободной энергией . По мере их продвижения по цепи они теряют энергию.

Энергетические соотношения в дыхательной цепи митохондрий и участки переноса ионов Н + через мембрану

Часть энергии электронов используется I, III, IV комплексами дыхательных ферментов для перемещения ионов водорода через мембрану в межмембранное пространство. Другая часть рассеивается в виде тепла. Упрощенно сказанное представить в виде равенства:

5. Перенос ионов водорода через мембрану (выкачивание) происходит не случайно, а в строго определенных участках мембраны. Эти участки называются участки сопряжения (или, не совсем точно, пункты фосфорилирования). Они представлены I, III, IV комплексами дыхательных ферментов. В результате работы этих комплексов формируется градиент ионов водорода между внутренней и наружной поверхностями внутренней митохондриальной мембраны. Такой градиент обладает потенциальной энергией .

Градиент (Δμ, "дельта мю") получил название электрохимический градиент или протонный градиент. Он имеет две составляющие – электрическую (ΔΨ, "дельта пси") и концентрационную (ΔрН):

Δμ = ΔΨ + ΔрН

Название "участки сопряжения " возникло из-за того, что появление протонного градиента в результате окислительных процессов обеспечивает в дальнейшем фосфорилирование АДФ до АТФ. Именно благодаря этим трем ферментным комплексам энергия реакций окисления может передаваться на фосфорилирование , т.е. существует сопряжение (связывание) двух процессов.

6. Как завершение всех предыдущих событий и необходимый их результат происходит наработка АТФ: ионы H + теряют свою энергию, проходя через АТФ-синтазу (Н + -транспортирующая АТФ-аза, КФ 3.6.3.14.). Часть этой энергии тратится на синтез АТФ . Другая часть рассеивается в виде тепла:

Структурная организация цепи переноса электронов

Электроны, мигрирующие по дыхательной цепи, движутся по сложным траекто­риям. Особенность их движения состоит в петлеобразных движениях в пределах каждого из ферментативных комплексов дыхательной цепи. В каждый комплекс поступают 4 протона на одну пару электронов.

Комплекс I (F -цикл). Суммарно можно представить, что молекула НАДН вносит 2 электрона в митохондриальную мембрану, еще 2 электрона поступают от FeS-

белков и вместе с 4 протонами из матрикса совместно с 2 молекулами ФМН обра­зуют комплекс ФМН-Н 2 , который перемещается к внешней поверхности мембра­ны.

Вблизи от поверхности мембраны комплекс распадается на 2 пары электронов, 4 протона и 2 ФМН.

Следует учитывать, что в комплексе I присутствует одна молекула ФМН, которая успевает 2 раза переместиться поперек мембраны, чтобы перенести 4Н + . Две пары электронов связываются двумя FeS-белками, имеющими более высокий электрохимический потенциал и переносятся к внутренней стороне мембраны к ФМН (одна пара электронов) и коэнзиму Q (вторая пара электронов). ФМН воз­вращается обратно, а протоны не имеют центров связывания и поэтому покидают мембрану. Участки выброса протонов из мембраны представляют собой 10-14 па­раллельных а-спиральных участков полипептидный цепей, поднимающихся от ферментативных комплексов перпендикулярно внешней стороне мембраны. Про­тоны передаются в межмембранное пространство по системе водородных связей, стабилизирующих а-спиральные участки.

Комплекс III (Q -цикл). Через систему FeS-белков 2е" (от комплекса I) перено­сятся к внутренней поверхности мембраны и с 2 протонами из матрикса взаимо­действуют с коэнзимом Q (убихиноном), формируя комплекс QH 2; , который пред­ставляет собой восстановленный убихинон. Еще одна молекула QH2 формируется в результате взаимодействия 2е" (их переносят в комплекс III цитохромы bj и Ь 2), с 2 протонами из матрикса и коэнзимом Q. Убихинон, являясь подвижным пере­носчиком электронов и протонов, переносит их к внешней митохондриальной мембране, где происходит распад этой молекулы. В области внешней стороны мембраны 2 молекулы QH2, распадаются на 2е", 4 протона и 2 молекулы Q*~ (се-михинона). Электроны перехватывают FeS-белки (они содержат 2 Fe 2 S2 центра). Протоны покидают мембрану, а 2 молекулы Q" ~ передают 2 электрона цитохро-мам Ь] и Ь 2 которые, в свою очередь, переносят их к коэнзиму Q. 2 Молекулы се-михинона (Q""), передав свои неспаренные электроны цитохромам Ъ\ и Ь 2 , пре­вращаются в форму коэнзима Q и возвращаются к внутренней стороне мембраны. Два электрона через FeS-белки мигрируют к цитохрому С\. Цитохром Q, в свою очередь, передает электроны цитохрому С, который перемещается по внешней поверхности мембраны и является подвижным переносчиком электронов между III и IV комплексами.

Комплекс IV (О-цикл). В IV комплекс электроны вносит цитохром С. Через ци­тохромы а и а 3 электроны поступают к внутренней поверхности мембраны, где совместно с протонами и молекулой кислорода превращаются в пероксид водоро­да (Н 2 О 2). Он мигрирует к внешней поверхности мембраны и вновь распадается на кислород, электроны и протоны. Протоны выталкиваются из мембраны, а элек­троны с помощью цитохромов а и а 3 вновь доставляются к внутренней поверхно­сти мембраны где, уже утратив свою высокую энергию, взаимодействуют с ки­слородом и протонами из матрикса и образуют эндогенную воду. Особенность функционирования IV комплекса состоит в переносе через мембрану только 2-х протонов из матрикса. Это объясняется тем, что два другие протона из 4-х посту­пающих в IV комплекс расходуются на образование воды.

Протонный цикл - замкнутый процесс перемещения Н + в митохондриях. Функцией протонного канала является первичное запасание энергии электронов в виде мембранного потенциала с последующим использованием ее для синтеза АТФ, а также для переноса веществ через митохондриальную мембрану (каналы транспортных систем).

Строение АТФ-синтазы и синтез АТФ

АТФ-синтаза (Н + -АТФ-аза) - интегральный белок внутренней мембраны митохондрий. Он расположен в непосредственной близости к дыхательной цепи. АТФ-синтаза состоит из 2 белковых комплексов, обозначаемых как F 0 и F 1 .

Гидрофобный комплекс F 0 погружён в мембрану. Он служит основанием, которое фиксирует АТФ-синтазу в мембране. Комплекс F0 состоит из нескольких субъединиц, образующих канал, по которому протоны переносятся в матрикс.

Строение и механизм действия АТФ-синтазы. А - F 0 и F 1 - комплексы АТФ-синтазы, В состав F 0 входят полипептидные цепи, которые образуют канал, пронизывающий мембрану насквозь. По этому каналу протоны возвращаются в матрикс из межмембранного пространства; белок F 1 выступает в матрикс с внутренней стороны мембраны и содержит 9 субъединиц, 6 из которых образуют 3 пары α и β ("головка"), прикрывающие стержневую часть, которая состоит из 3 субъединиц γ, δ и ε. γ и ε подвижны и образуют стержень, вращающийся внутри неподвижной головки и связанный с комплексом F0. В активных центрах, образованных парами субъединиц α и β, происходит связывание АДФ, неорганического фосфата (Р i) и АТФ. Б - Каталитический цикл синтеза АТФ включает 3 фазы, каждая из которых проходит поочерёдно в 3 активных центрах: 1 - связывание АДФ и Н 3 РО 4 ; 2 - образование фосфоангидридной связи АТФ; 3 - освобождение конечного продукта. При каждом переносе протонов через канал F 0 в матрикс все 3 активных центра катализируют очередную фазу цикла. Энергия электрохимического потенциала расходуется на поворот стержня, в результате которого циклически изменяется конформация α- и β-субъединиц и происходит синтез АТФ.

Дыхательный контроль

Работа дыхательных ферментов регулируется с помощью эффекта, который получил название дыхательный контроль .

Дыхательный контроль – это прямое влияние электрохимического градиента на скорость движения электронов по дыхательной цепи (т.е. на величину дыхания). В свою очередь, величина градиента напрямую зависит от соотношения АТФ и АДФ , количественная сумма которых в клетке практически постоянна ([АТФ] + [АДФ] = const). Реакции катаболизма направлены на поддержание постоянно высокого уровня АТФ и низкого АДФ.

Возрастание протонного градиента возникает при снижении количества АДФ и накоплении АТФ (состояние покоя ), т.е. когда АТФ-синтаза лишена своего субстрата и ионы Н + не проникают в матрикс митохондрии. При этом ингибирующее влияние градиента усиливается и продвижение электронов по цепи замедляется . Ферментные комплексы остаются в восстановленном состоянии. Следствием является уменьшение окисления НАДН и ФАДН 2 на I и II комплексах и замедление катаболизма в клетке.

Снижение протонного градиента возникает при исчерпании резервов АТФ и избытке АДФ, т.е. при работе клетки . В этом случае активно работает АТФ-синтаза и через канал F о проходят в матрикс ионы Н + . При этом градиент, естественно, снижается, поток электронов возрастает, в результате повышается выкачивание ионов Н + в межмембранное пространство и снова их быстрое "проваливание" через АТФ-синтазу внутрь митохондрий с синтезом АТФ. Ферментные комплексы I и II усиливают окисление НАДН и ФАДН 2 (как источников электронов) и снимается ингибирующее влияние НАДН на цикл лимонной кислоты и пируватдегидрогеназный комплекс. Как итог – активируются реакции катаболизма углеводов и жиров.

Коэффициент Р/О (коэффициент окислительного фосфорилирования) являет­ся мерой эффективности дыхания как поставщика энергии для синтеза АТФ. Ко­эффициент Р/О (или Р/2е) численно равен отношению количества синтезирован­ного АТФ к количеству атомов потребленного кислорода. Чем выше коэффици­ент, тем больше синтезируется АТФ в расчете на каждую пару перенесенных электронов. В случае полной дыхательной цепи Р/О близок к 3, в случае укоро­ченной к 2.

Микросомальное окисление

Окисление может происходить не только в митохондриях, но и в микросомах и пероксисомах. В этих структурах тоже имеются цепи транспорта электронов (т.е. процесс окисления), но не ведущие к синтезу АТФ. Эти цепи включают НАДФ, ФМН, ФАД, FeS-белки, аскорбиновую кислоту, цитохромы другие : b 5 , P 450 . Цель этих цепей окисления: окисление циклических веществ, чтобы сделать их более растворимыми для выведения через почки, гидроксилирование - для тех же целей стероидных гормонов, обезвреживание токсинов, лекарственных веществ, чужеродных молекул (ксенобиотиков).

Не способны использовать для питания никакой другой субстрат, кроме углеводов.

Предварительно сложные углеводы расщепляются до простых, вплоть до образования глюкозы. Глюкоза является универсальным субстратом в процессе клеточного дыхания. Окисление глюкозы подразделяется на 3 этапа:

  1. окислительное декарбоксилирование и цикл Кребса ;

При этом гликолиз является общей фазой для аэробного и анаэробного дыхания.

Работа АТФ-синтазы

Процесс окислительного фосфорилирования осуществляется пятым комплексом дыхательной цепи митохондрий - Протонная АТФ-синтаза , состоящая из 9 субъединиц 5 типов:

  • 3 субъединицы (γ,δ,ε) способствуют целостности АТФ-синтазы
  • β субъединица является основной функциональной единицей. Она имеет 3 конформации:
      • L-конформация - присоединяет АДФ и Фосфат (поступают в митохондрию из цитоплазмы с помощью специальных переносчиков)
      • Т-конформация - к АДФ присоединяется фосфат и образуется АТФ
      • О-конформация - АТФ отщепляется от β-субъединицы и переходит на α-субъединицу.
          • Для того, чтобы субъединица изменила конформацию необходим протон водорода, так как конформация меняется 3 раза необходимо 3 протона водорода. Протоны перекачиваются из межмембранного пространства митохондрии под действием электрохимического потенциала.
  • α-субъединица транспортирует АТФ к мембранному переносчику, который «выбрасывает» АТФ в цитоплазму. Взамен из цитоплазмы этот же переносчик транспортирует АДФ. На внутренней мембране митохондрий также находится переносчик Фосфата из цитоплазмы в митохондрию, но для его работы необходим протон водорода. Такие переносчики называются транслоказами.

Суммарный выход

Для синтеза 1 молекулы АТФ необходимо 3 протона.

Ингибиторы окислительного фосфорилирования

Ингибиторы блокируют V комплекс:

  • Олигомицин - блокируют протонные каналы АТФ-синтазы.
  • Атрактилозид , циклофиллин - блокируют транслоказы.

Разобщители окислительного фосфорилирования

Разобщители - липофильные вещества, которые способны принимать протоны и переносить их через внутреннюю мембрану митохондрий минуя V комплекс(его протонный канал). Разобщители:

  • Естественные - продукты перекисного окисления липидов , жирных кислот с длинной цепью; большие дозы тиреоидных гормонов .
  • Искусственные - динитрофенол, эфир, производные витамина К , анестетики.

Wikimedia Foundation . 2010 .

  • Йоруба (язык)
  • Новосибирск Авиа

Смотреть что такое "" в других словарях:

    окислительное фосфорилирование - см. фосфорилирование окислительное. окислительные брожения – см. брожения окислительные. (Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.) … Словарь микробиологии

    ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ - в биохимии образование аденозинтрифосфорной кислоты (АТФ) из аденозиндифосфорной и фосфорной кислот за счет энергии, освобождающейся при окислении органических веществ в живых клетках. См. также Фосфорилирование … Большой Энциклопедический словарь

    ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ - осуществляющийся в живых клетках синтез молекул аденозинтрифосфорной к ты (АТФ) из адеиозиндифосфорной (АДФ) и фосфорной к т за счёт энергии окисления молекул органич. веществ. Аккумулированная в АТФ энергия используется затем клеткой для… … Биологический энциклопедический словарь

    окислительное фосфорилирование - — Тематики биотехнологии EN oxidative phosphorylation … Справочник технического переводчика

    окислительное фосфорилирование - (биохим.), образование аденозинтрифосфорной кислоты (АТФ) из аденозиндифосфорной и фосфорной кислот за счёт энергии, освобождающейся при окислении органических веществ в живых клетках. См. также Фосфорилирование. * * * ОКИСЛИТЕЛЬНОЕ… … Энциклопедический словарь

    окислительное фосфорилирование - oxidative phosphorylation окислительное фосфорилирование. Фосфорилирование основного биоэнергетического носителя (АДФ в АТФ), сопряженное с окислением низкомолекулярных соединений кислородом в дыхательной цепи; превращение АДФ в АТФ может… … Молекулярная биология и генетика. Толковый словарь.

    ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ - синтез АТФ из аденозиндифосфата и неорг. фосфата, осуществляющийся в живых клетках, благодаря энергии, выделяющейся при окислении орг. в в в процессе клеточного дыхания. В общем виде О. ф. и его место в обмене в в можно представить схемой: АН 2… … Химическая энциклопедия

    Окислительное фосфорилирование - осуществляющийся в живых клетках синтез молекул аденозинтрифосфорной кислоты (АТФ) из аденозиндифосфорной (АДФ) и фосфорной кислот за счёт энергии окисления молекул органических веществ (субстратов). В результате О. ф. в клетках… … Большая советская энциклопедия

    ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ - (биохим.), образование аденозинтрифосфорной кислоты (АТФ) из аденозиндифосфорной и фосфорной к т за счёт энергии, освобождающейся при окислении органич. в в в живых клетках. См. также Фосфррилирование … Естествознание. Энциклопедический словарь

    ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ - образование АТФ за счет энергии переноса электронов с субстратов (напр., промежуточных продуктов цикла Кребса) на кислород … Словарь ботанических терминов

Книги

  • Основы биохимии Ленинджера. Учебное пособие. В 3-х томах. Том 2: Биоэнергетика и метаболизм , Кокс Майкл , Нельсон Дэвид , В учебном издании, написанном американскими учеными, которые получили признание как талантливые преподаватели университетского уровня, рассмотрены современные концепции биохимии в… Категория: Разное Издатель: Бином. Лаборатория знаний , Производитель: