Механическая работа и единицы ее измерения. Механическая работа

Если на тело действует сила, то эта сила совершает работу по перемещению этого тела. Прежде чем дать определение работе при криволинейном движении мате­риальной точки, рассмотрим частные случаи:

В этом случае механиче­ская работа A равна:

A = F s cos =
,

или A = Fcos × s = F S × s ,

где F S – проекция силы на перемеще­ние. В данном случае F s = const , и геометрический смысл работы A – это площадь прямо­угольника, построенного в координатах F S , , s .

Построим график проекции силы на направление перемещения F S как функции перемещения s. Полное перемещение представим как сумму n малых перемещений
. Для ма­лого i -ого перемещения
работа равна

или площади заштрихованной трапеции на рисунке.

Полная механическая работа по перемещению из точки 1 в точку 2 будет равна:


.

Величина, стоящая под интегралом будет представлять элементарную работу по бесконечно малому перемещению
:

­– элементарная работа.

Разбиваем траекторию движения материальной точки на бесконечно малые перемещения и работу силы по перемещению материальной точки из точки 1 в точку 2 определяем как криволинейный интеграл:

работа при криволинейном движении.

Пример 1: Работа силы тяжести
при криволинейном движении материальной точки.


.

Далее как постоянную величину можно вынести за знак интеграла, а интеграл согласно рисунку будет представлять полное перемещение . .

Если обозначить высоту точки 1 от поверхности Земли через , а высоту точки 2 через , то

Мы видим, что в данном случае работа определяется положением материальной точки в начальный и конечный момент времени и не зависит от формы траектории или пути. Работа силы тяжести по замкнутому пути равна нулю:
.

Силы, работа которых на замкнутом пути равна нулю, называется консервативными .

Пример 2 : Работа силы трения.

Это пример неконсервативной силы. Чтобы показать это достаточно рассмотреть элементарную работу силы трения:

,

т.е. работа силы трения всегда отрицательная величина и на замкнутом пути не может быть равной нулю. Работа, совершаемая в единицу времени, называется мощностью . Если за время
совершается работа
, то мощность равна

механическая мощность .

Взяв
в виде

,

получим для мощности выражение:

.

В СИ единицей работы является джоуль:
= 1 Дж = 1 Н1 м, а единицей мощности является ватт: 1 Вт = 1 Дж/с.

Механическая энергия.

Энергия является общей количественной мерой движения взаимодействия всех видов материи. Энергия не исчезает и не возникает из нечего: она лишь может переходить из одной формы в другую. Понятие энергии связывает воедино все явления в природе. В соответствии с различными формами движения материи рассматривают разные виды энергии – механическую, внутреннюю, электромагнитную, ядерную и др.

Понятия энергии и работы тесно связаны друг с другом. Известно, что работа совершается за счет запаса энергии и, наоборот, совершая работу, можно увеличить запас энергии в каком-либо устройстве. Другими словами работа – это количественная мера изменения энергии:

.

Энергия также как и работа в СИ измеряется в джоулях: [E ]=1 Дж.

Механическая энергия бывает двух видов – кинетическая и потенциальная.

Кинетическая энергия (или энергия движения) определяется массами и скоростями рассматриваемых тел. Рассмотрим материальную точку, движущуюся под действием силы . Работа этой силы увеличивает кинетическую энергию материальной точки
. Вычислим в этом случае малое приращение (дифференциал) кинетической энергии:

При вычислении
использован второй закон Ньютона
, а также
- модуль скорости материальной точки. Тогда
можно представить в виде:

-

- кинетическая энергия движущейся материальной точки .

Умножив и разделив это выражение на
, и учитывая, что
, получим

-

- связь между импульсом и кинетической энергией движущейся материальной точки .

Потенциальная энергия (или энергия положения тел) определяется действием на тело консервативных сил и зависит только от положения тела.

Мы видели, что работу силы тяжести
при криволинейном движении материальной точки
можно представить в виде разности значений функции
, взятых в точке 1 и в точке 2 :

.

Оказывается, что всегда, когда силы консервативны, работу этих сил на пути 1
2 можно представить в виде:

.

Функция , которая зависит только от положения тела – называется потенциальной энергией .

Тогда для элементарной работы получим

работа равна убыли потенциальной энергии .

Иначе можно сказать, что работа совершается за счёт запаса потенциальной энергии.

Величину , равную сумме кинетической и потенциальной энергий частицы, называют полной механической энергией тела:

полная механическая энергия тела .

В заключении заметим, что используя второй закон Ньютона
, дифференциал кинетической энергии
можно представить в виде:

.

Дифференциал потенциальной энергии
, как указывали выше, равен:

.

Таким образом, если сила – консервативная сила и отсутствуют другие внешние силы, то , т.е. в этом случае полная механическая энергия тела сохраняется.

Лошадь тянет телегу с некоторой силой, обозначим её F тяги. Дедушка, сидящий на телеге, давит на неё с некоторой силой. Обозначим её F давл. Телега движется вдоль направления силы тяги лошади (вправо), а в направлении силы давления дедушки (вниз) телега не перемещается. Поэтому в физике говорят, что F тяги совершает работу над телегой, а F давл не совершает работу над телегой.

Итак, работа силы над телом или механическая работа – физическая величина, модуль которой равен произведению силы на путь, пройденный телом вдоль направления действия этой сил ы:

В честь английского учёного Д.Джоуля единица механической работы получила название 1 джоуль (согласно формуле, 1 Дж = 1 Н·м).

Если на рассматриваемое тело действует некоторая сила, значит, на него действует некоторое тело. Поэтому работа силы над телом и работа тела над телом – полные синонимы. Однако, работа первого тела над вторым и работа второго тела над первым – частичные синонимы, поскольку модули этих работ всегда равны, а их знаки всегда противоположны. Именно поэтому в формуле присутствует знак «±». Обсудим знаки работы более подробно.

Числовые значения силы и пути – всегда неотрицательные величины. В отличие от них механическая работа может иметь как положительный, так и отрицательный знаки. Если направление силы совпадает с направлением движения тела, то работу силы считают положительной. Если направление силы противоположно направлению движения тела, работу силы считают отрицательной (берём «–» из «±» формулы). Если направление движения тела перпендикулярно направлению действия силы, то такая сила работу не совершает, то есть A = 0.

Рассмотрите три иллюстрации по трём аспектам механической работы.

Совершение силой работы может выглядеть по-разному с точек зрения различных наблюдателей. Рассмотрим пример: девочка едет в лифте вверх. Совершает ли она механическую работу? Девочка может совершать работу только над теми телами, на которые действует силой. Такое тело лишь одно – кабина лифта, так как девочка давит на её пол своим весом. Теперь надо выяснить, проходит ли кабина некоторый путь. Рассмотрим два варианта: с неподвижным и движущимся наблюдателем.

Пусть сначала мальчик-наблюдатель сидит на земле. По отношению к нему кабина лифта движется вверх и проходит некоторый путь. Вес девочки направлен в противоположную сторону – вниз, следовательно, девочка совершает над кабиной отрицательную механическую работу: A дев < 0. Вообразим, что мальчик-наблюдатель пересел внутрь кабины движущегося лифта. Как и ранее, вес девочки действует на пол кабины. Но теперь по отношению к такому наблюдателю кабина лифта не движется. Поэтому с точки зрения наблюдателя в кабине лифта девочка не совершает механическую работу: A дев = 0.

Мeханическая работа - это физическая величина - скалярная количественная мера действия силы (равнодействующей сил) на тело или сил на систему тел. Зависит от численной величины и направления силы (сил) и от перемещения тела (системы тел) .

Используемые обозначения

Работа обычно обозначается буквой A (от нем. A rbeit - работа, труд) или буквой W (от англ. w ork - работа, труд).

Определение

Работа силы, приложенной к материальной точке

Суммарная работа по перемещению одной материальной точки, совершаемая несколькими силами, приложенными к этой точке, определяется как работа равнодействующей этих сил (их векторной суммой). Поэтому дальше будем говорить об одной силе, приложенной к материальной точке.

При прямолинейном движении материальной точки и постоянном значении приложенной к ней силы , работа (этой силы) равна произведению проекции вектора силы на направление движения и длины вектора перемещения, совершённого точкой:

A = F s s = F s c o s (F , s) = F → ⋅ s → {\displaystyle A=F_{s}s=Fs\ \mathrm {cos} (F,s)={\vec {F}}\cdot {\vec {s}}} A = ∫ F → ⋅ d s → . {\displaystyle A=\int {\vec {F}}\cdot {\vec {ds}}.}

(подразумевается суммирование по кривой, которая является пределом ломаной, составленной из последовательных перемещений d s → , {\displaystyle {\vec {ds}},} если вначале считать их конечными, а потом устремить длину каждого к нулю).

Если существует зависимость силы от координат , интеграл определяется следующим образом:

A = ∫ r → 0 r → 1 F → (r →) ⋅ d r → {\displaystyle A=\int \limits _{{\vec {r}}_{0}}^{{\vec {r}}_{1}}{\vec {F}}\left({\vec {r}}\right)\cdot {\vec {dr}}} ,

где r → 0 {\displaystyle {\vec {r}}_{0}} и r → 1 {\displaystyle {\vec {r}}_{1}} - радиус-векторы начального и конечного положения тела соответственно.

  • Следствие. Если направление приложенной силы ортогонально перемещению тела или перемещение равно нулю, то работа (этой силы) равна нулю.

Работа сил, приложенных к системе материальных точек

Работа сил по перемещению системы материальных точек определяется как сумма работ этих сил по перемещению каждой точки (работы, совершённые над каждой точкой системы, суммируются в работу этих сил над системой).

Даже если тело не является системой дискретных точек, его можно разбить (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых можно считать материальной точкой, и вычислить работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл.

  • Эти определения могут быть использованы как для вычисления работы конкретной силы или класса сил, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.

Кинетическая энергия

E k = 1 2 m v 2 . {\displaystyle E_{k}={\frac {1}{2}}mv^{2}.}

Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Потенциальная энергия

Работа в термодинамике

В термодинамике работа, совершённая газом при расширении , рассчитывается как интеграл давления по объёму:

A 1 → 2 = ∫ V 1 V 2 P d V . {\displaystyle A_{1\rightarrow 2}=\int \limits _{V_{1}}^{V_{2}}PdV.}

Работа, совершённая над газом, совпадает с этим выражением по абсолютной величине, но противоположна по знаку.

  • Естественное обобщение этой формулы применимо не только к процессам, где давление есть однозначная функция объёма, но и к любому процессу (изображаемому любой кривой в плоскости PV ), в частности, к циклическим процессам.
  • В принципе, формула применима не только к газу, но и к чему угодно, способному оказывать давление (надо только чтобы давление в сосуде было всюду одинаковым, что неявно подразумевается в формуле).

Эта формула прямо связана с механической работой. Действительно, попробуем написать механическую работу при расширении сосуда, учитывая, что сила давления газа будет направлена перпендикулярно каждой элементарной площадке, равна произведению давления P на площадь dS площадки, и тогда работа, совершаемая газом для смещения h одной такой элементарной площадки будет

d A = P d S h . {\displaystyle dA=PdSh.}

Видно, что это и есть произведение давления на приращение объёма вблизи данной элементарной площадкой. А просуммировав по всем dS , получим конечный результат, где будет уже полное приращение объёма, как и в главной формуле раздела.

Работа силы в теоретической механике

Рассмотрим несколько детальнее, чем это было сделано выше, построение определения энергии как риманова интеграла.

Пусть материальная точка M {\displaystyle M} движется по непрерывно дифференцируемой кривой G = { r = r (s) } {\displaystyle G=\{r=r(s)\}} , где s - переменная длина дуги, 0 ≤ s ≤ S {\displaystyle 0\leq s\leq S} , и на неё действует сила , направленная по касательной к траектории в направлении движения (если сила не направлена по касательной, то будем понимать под F (s) {\displaystyle F(s)} проекцию силы на положительную касательную кривой, таким образом сведя и этот случай к рассматриваемому далее). Величина F (ξ i) △ s i , △ s i = s i − s i − 1 , i = 1 , 2 , . . . , i τ {\displaystyle F(\xi _{i})\triangle s_{i},\triangle s_{i}=s_{i}-s_{i-1},i=1,2,...,i_{\tau }} , называется элементарной работой силы F {\displaystyle F} на участке и принимается за приближённое значение работы, которую производит сила F {\displaystyle F} , воздействующая на материальную точку, когда последняя проходит кривую G i {\displaystyle G_{i}} . Сумма всех элементарных работ является интегральной суммой Римана функции F (s) {\displaystyle F(s)} .

В соответствии с определением интеграла Римана , можем дать определение работе:

Предел, к которому стремится сумма ∑ i = 1 i τ F (ξ i) △ s i {\displaystyle \sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} всех элементарных работ, когда мелкость | τ | {\displaystyle |\tau |} разбиения τ {\displaystyle \tau } стремится к нулю, называется работой силы F {\displaystyle F} вдоль кривой G {\displaystyle G} .

Таким образом, если обозначить эту работу буквой W {\displaystyle W} , то, в силу данного определения,

W = lim | τ | → 0 ∑ i = 1 i τ F (ξ i) △ s i {\displaystyle W=\lim _{|\tau |\rightarrow 0}\sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} ,

следовательно,

W = ∫ 0 s F (s) d s {\displaystyle W=\int \limits _{0}^{s}F(s)ds} (1).

Если положение точки на траектории её движения описывается с помощью какого-либо другого параметра t {\displaystyle t} (например, времени) и если величина пройденного пути s = s (t) {\displaystyle s=s(t)} , a ≤ t ≤ b {\displaystyle a\leq t\leq b} является непрерывно дифференцируемой функцией, то из формулы (1) получим

W = ∫ a b F [ s (t) ] s ′ (t) d t . {\displaystyle W=\int \limits _{a}^{b}Fs"(t)dt.}

Размерность и единицы

Единицей измерения работы в

Одно из важнейших понятий механики – работа силы .

Работа силы

Все физические тела в окружающем нас мире приводятся в движение с помощью силы. Если на движущееся тело в попутном или противоположном направлении действует сила или несколько сил со стороны одного или нескольких тел, то говорят, что совершается работа .

То есть, механическая работу совершает действующая на тело сила. Так, сила тяги электровоза приводит в движение весь поезд, тем самым совершая механическую работу. Велосипед приводится в движение мускульной силой ног велосипедиста. Следовательно, эта сила также совершает механическую работу.

В физике работой силы называют физическую величину, равную произведению модуля силы, модуля перемещения точки приложения силы и косинуса угла между векторами силы и перемещения.

A = F · s · cos (F, s) ,

где F модульсилы,

s – модуль перемещения.

Работа совершается всегда, если угол между ветрами силы и перемещения не равен нулю. Если сила действует в направлении, противоположном направлению движения, величина работы имеет отрицательное значение.

Работа не совершается, если на тело не действуют силы, или если угол между приложенной силой и направлением движения равен 90 о (cos 90 o = 0).

Если лошадь тянет телегу, то мускульная сила лошади, или сила тяги, направленная по ходу движения телеги, совершает работу. А сила тяжести, с которой извозчик давит на телегу, работы не совершает, так как она направлена вниз, перпендикулярно направлению перемещения.

Работа силы – величина скалярная.

Единица работы в системе измерений СИ - джоуль. 1 джоуль – это работа, которую совершает сила величиной в 1 ньютон на расстоянии 1 м, если направления силы и перемещения совпадают.

Если на тело или материальную точку действуют несколько сил, то говорят о работе, совершаемой их равнодействующей силой.

В случае, если приложенная сила непостоянна, то её работа вычисляется как интеграл:

Мощность

Сила, приводящая в движение тело, совершает механическую работу. Но как совершается эта работа, быстро или медленно, иногда очень важно знать на практике. Ведь одна и та же работа может быть совершена за разное время. Работу, которую выполняет большой электромотор, может выполнить и маленький моторчик. Но ему для этого понадобится гораздо больше времени.

В механике существует величина, характеризующая быстроту выполнения работы. Эта величина называется мощностью .

Мощность – это отношение работы, выполненной за определённый промежуток времени, к величине этого промежутка.

N = A /∆ t

По определению А = F · s · cos α , а s/∆ t = v , следовательно

N = F · v · cos α = F · v ,

где F – сила, v скорость, α – угол между направлением силы и направление скорости.

То есть мощность – это скалярное произведение вектора силы на вектор скорости движения тела .

В международной системе СИ мощность измеряется в ваттах (Вт).

Мощность в 1 ватт – это работа в 1 джоуль (Дж), совершаемая за 1 секунду (с).

Мощность можно увеличить, если увеличить силу, совершающую работу, или скорость, с которой эта работа совершается.

Механическая работа это энергетическая характеристика движения физических тел, имеющая скалярный вид. Она равна модулю силы действующей на тело, умноженной на модуль перемещения вызванного этой силой и на косинус угла между ними.

Формула 1 - Механическая работа.


F - Сила, действующая на тело.

s - Перемещение тела.

cosa - Косинус угла между силой и перемещением.

Данная формула имеет общий вид. В случае если угол между прикладываемой силой и перемещением равен нулю, то косинус равен 1. Соответственно работа будет равна только произведению силы на перемещение. Проще говоря, если тело движется в направлении приложения силы, то механическая работа равна произведению силы на перемещение.

Второй частный случай, когда угол между силой, действующей на тело и его перемещением равен 90 градусов. В этом случае косинус 90 градусов равен нулю, соответственно работа будет равна нулю. И действительно, что происходит мы, прикладываем силу в одном направлении, а тело движется перпендикулярно ему. То есть тело движется явно не под действием нашей силы. Таким образом, работа нашей силы по перемещению тела равна нулю.

Рисунок 1 - Работа сил при перемещении тела.


В случае если на тело действует больше одной силы, то рассчитывают суммарную силу, действующую на тело. И далее ее подставляют в формулу как единственную силу. Тело под действием силы может перемещаться не только прямолинейно, но и по произвольной траектории. В этом случае работа вычисляется для малого участка перемещения, который можно считать прямолинейным и далее суммируется по всему пути.

Работа может быть как положительной, так и отрицательной. То есть если перемещение и сила совпадают по направлению, то работа положительна. А если сила приложена в одном направлении, а тело перемещается в другом, то работа будет отрицательна. Примером отрицательной работы может служить работа силы трения. Так как сила трения направлена встречно движению. Представьте себе, тело движется по плоскости. Сила, приложенная к телу, толкает его в определенном направлении. Эта сила совершает положительную работу по перемещению тела. Но при этом сила трения совершает отрицательную работу. Она тормозит перемещение тела и направлена навстречу его движению.

Рисунок 2 - Сила движения и трения.


Работа в механике измеряется в Джоулях. Один Джоуль это работа совершаемая силой в один Ньютон при перемещении тела на один метр. Кроме направления движения тела может меняться и величина прилагаемой силы. К примеру, при сжатии пружины, сила прилагаемой к ней будет увеличиваться пропорционально пройденному расстоянию. В этом случае работу вычисляют по формуле.

Формула 2 - Работа сжатия пружины.


k - жесткость пружины.

x - координата перемещения.