Коррозия котлов и способы ее предотвращения. Предупреждение коррозии оборудования теплоснабжения

Впервые наружная коррозия экранных труб была обнаружена на двух электростанциях у котлов высоко­го давления ТП-230-2, работавших на угле марки АШ и сернистом мазуте и находившихся до того в эксплуата­ции около 4 лет. Наружная поверхность труб подверга­лась коррозионному разъеданию со стороны, обращен­ной в топку, в зоне максимальной температуры факела. 88

Разрушались преимущественно трубы средней (по ширине) части топки, непосредственно над зажигатель­ным. поясом. Широкие и относительно неглубокие корро­зионные язвы имели неправильную форму и часто смы­кались между собой, вследствие чего поврежденная поверхность труб была неровной, бугристой. В середине наиболее глубоких язв появились свищи, и через них начали вырываться струи воды и пара.

Характерным было полное отсутствие такой коррозии на экранных трубах котлов среднего давления этих элек­тростанций, хотя среднего давления находились там в эксплуатации значительно "более длительное время.

В последующие годы наружная коррозия экранных труб появилась и на других котлах высокого давления, работавших на твердом топливе. Зона коррозионных разрушений распространялась иногда на значительную высоту; в отдельные местах толщина стенок труб в ре­зультате коррозии уменьшалась до 2-3 мм. Было заме­чено также, что эта коррозия практически отсутствует в котлах высокого давления, работающих на мазуте.

Наружная коррозия экранных труб была обнаружена у котлов ТП-240-1 после 4 лет эксплуатации, работающих при давлении в барабанах 185 ат. В этих котлах сжи­гался подмосковный бурый уголь, имевший влажность около 30%; мазут сжигали только при растопке. У этих котлов коррозионные разрушения также возникали в зо­не наибольшей тепловой нагрузки экранных труб. Осо­бенность процесса коррозии заключалась в том, что тру­бы разрушались как со стороны, обращенной в топку, так и со стороны, обращенной к обмуровке (рис. 62).

Эти факты показывают, что коррозия экранных труб зависит прежде всего от температуры их поверхности. У котлов среднего давления вода испаряется при темпе­ратуре около 240° С; у котлов, рассчитанных на давле­ние 110 ат, расчетная температура кипения воды равна 317° С; в котлах ТП-240-1 вода кипит при температуре 358° С. Температура наружной поверхности экранных труб обычно превышает температуру кипения примерно на 30-40° С.

Можно. предположить, что интенсивная наружная коррозия металла начинается при повышении его тем­пературы до 350° С. У котлов, рассчитанных на давле­ние 110 ат, эта температура достигается лишь с огневой стороны труб, а у котлов, имеющих давление 185 ат, она соответствует температуре воды в трубах. Именно поэтому коррозия экранных труб со стороны обмуров­ки наблюдалась только у этих котлов.

Подробное изучение вопроса было произведено на котлах ТП-230-2, работавших на одной из упомянутых электростанций . Там отбирались пробы газов и горя-

Щих частиц из факела на расстоянии около 25 мм от экранных труб. Близ фронтового экрана в зоне интен­сивной наружной коррозии труб топочные газы почти не содержали свободного кислорода. Вблизи же заднего экрана, у которого наружная коррозия труб почти от­сутствовала, свободного кислорода в газах было значи­тельно больше. Кроме того, проверка показала, что в районе образования коррозии более 70% проб газов

Можно "предположить, что в присутствии избыточно­го кислорода сероводород сгорает и коррозии не про­исходит, Но при отсутствии избыточного кислорода се­роводород вступает в химическое соединение с металлом труб. При этом образуется сульфид железа FeS. Этот продукт коррозии действительно был найден в отложе­ниях на экранных трубах.

Наружной коррозии подвержена не только углеро­дистая сталь, но и хромомолибденовая. В частности, у котлов ТП-240-1 коррозия поражала экранные трубы, изготовленные из стали марки 15ХМ.

До сих пор отсутствуют проверенные мероприятия для полного предупреждения описанного вида коррозии. Некоторое уменьшение скорости разрушения. металла до­стигалось. после наладки процесса горения, в частности при увеличении избытка воздуха в топочных газах.

27. КОРРОЗИЯ ЭКРАНОВ ПРИ СВЕРХВЫСОКОМ ДАВЛЕНИИ

В этой книге вкратце рассказано об условиях работы металла паровых котлов современных электростанций. Но прогресс энергетики в СССР продолжается, и теперь вступает в строй большое число новых котлов, рассчи­танных на более высокие давления и температуры пара. В этих условиях большое значение имеет практический опыт эксплуатации нескольких котлов ТП-240-1, рабо­тающих с 1953-1955 гг. при давлении 175 ат (185 ат в барабане). Весьма ценны, >в частности, сведения о кор­розии их экранов.

Экраны этих котлов были подвержены коррозии как с наружной, так и с внутренней стороны. Их наружная коррозия описана в предыдущем параграфе этой главы, разрушение же внутренней поверхности труб не похоже ни на один из описанных выше видов коррозии металла

Разъедание происходило в основном с огневой стороны верхней части наклонных труб холодной воронки и сопровождалось появле­нием коррозионных раковин (рис. 63,а). В дальнейшем число таких раковин увеличивалось, и возникала сплошная полоса (иногда две параллельные. полосы) разъеденного металла (рис. 63,6). Характер­ным являлось также отсутствие коррозии в зоне сварных стыков.

Внутри труб имелся налет рыхлого шлама толщиной 0,1-0,2 мм, состоявшего в основном из окислов железа и меди. Увеличение кор­розионного разрушения металла не сопровождалось увеличением толщины слоя шлама, следовательно, коррозия под слоем шлама не была основной причиной разъедания внутренней поверхности экран­ных труб.

В котловой воде поддерживался режим чистофосфатной щелоч­ности. Фосфаты вводились в котел не.непрерывно, а периодически.

Большое значение имело то обстоятельство, что температура металла труб периодически резко.повышалась и иногда была выше 600° С (рис. 64). Зона наиболее частого и максимального повыше­ния температуры совпадала с зоной наибольшего разрушения ме­талла. Снижение давления в котле до 140-165 ат (т. е. до давле­ния, при котором работают новые серийные котлы) не изменяло характера временного повышения температуры труб, но сопровож­далось значительным снижением максимального значения этой тем­пературы. Причины такого периодического повышения температуры огневой стороны наклонных труб холодной. воронки еще подробно не изучены.

В настоящей книге рассматриваются конкретные во­просы, связанные с работой стальных деталей парового котла. Но для изучения этих сугубо практических вопро­сов необходимо знать общие сведения, касающиеся строения стали и ее " свойств. В схемах, показывающих строение металлов, атомы иногда изображают в виде соприкасающихся друг с дру­гом шаров (рис. 1). Такие схемы по­казывают расстановку атомов в ме­талле, но в них трудно наглядно пока­зать расположение атомов друг отно­сительно друга.

Эрозией называется постепенное разрушение поверх­ностного слоя металла под влиянием механического воз­действия. Наиболее распространенным видом эрозии стальных элементов - парового котла является их истира­ние твердыми частицами золы, движущейся вместе с ды­мовыми газами. При длительном истирании происходит постепенное уменьшение толщины стенок труб, а затем их деформация и разрыв под действием внутреннего давления.

В судовых паровых котлах коррозия может протекать как со стороны пароводяного контура, так и со стороны продуктов сгорания топлива.

Внутренние поверхности пароводяного контура могут подвергаться следующим видам коррозии;

Кислородная коррозия - является наиболее опасным видом коррозии. Характерной особенностью кислородной коррозии является образование местных точечных очагов коррозии, доходящих до глубоких язвин и сквозных дыр; Наиболее подвержены кислородной коррозии входные участки экономайзеров, коллекторы и опускные трубы циркуляционных контуров.

Нитритная коррозия - в отличие от кислородной поражает внутренние поверхности теплонапряженных подъемных трубок и вызывает образование более глубоких язвин диаметром 15 ^ 20 мм.

Межкристаллитная коррозия является особым видом коррозии и возникает в местах наибольших напряжений металла (сварные швы, вальцовочные и фланцевые соединения) в результате взаимодействия котельного металла с высококонцентрированной щелочью. Характерной особенностью является появление на поверхности металла сетки из мелких трещин, постепенно развивающихся в сквозные трещины;

Подшламоеая коррозия возникает в местах отложения шлама и в застойных зонах циркуляционных контуров котлов. Процесс протекания носит электрохимический характер при контакте окислов железа с металлом.

Со стороны продуктов сгорания топлива могут наблюдаться следующие виды коррозии;

Газовая коррозия поражает испарительные, перегревательные и экономайзерные поверхности нагрева, обшивку кожуха,

Газонаправляющие щиты и другие элементы котла, подвергающиеся воздействию высоких температур газов.. При повышении температуры металла котельных труб свыше 530 0С (для углеродистой стали) начинается разрушение защитной оксидной пленки на поверхности труб, обеспечивая беспрепятственный доступ кислорода к чистому металлу. При этом на поверхности труб происходит коррозия с образованием окалины.

Непосредственной причиной этого вида коррозии является нарушение режима охлаждения указанных элементов и повышение их температуры выше допустимой. Для труб поверхностей нагрева причинами повЫш Ения температуры стенок могут быть; образование значительного слоя накипи, нарушения режима циркуляции (застой, опрокидывание, образование паровых пробок), упуск воды из котла, неравномерность раздачи воды и отбора пара по длине парового коллектора.

Высокотемпературная (ванадиевая) коррозия поражает поверхности нагрева пароперегревателей, расположенные в зоне высоких температур газов. При сжигании топлива происходит образование окислов ванадия. При этом при недостатке кислорода образуется трехокись ванадия, а при его избытке - пятиокись ванадия. Коррозионно-опасной является пятиокись ванадия У205, имеющая температуру плавления 675 0С. Пятиокись ванадия, выделяющаяся при сжигании мазутов, налипает на поверхности нагрева, имеющие высокую температуру, и вызывает активное разрушение металла. Опыты показали, что даже такие содержания ванадия, как 0,005 % по весовому составу могут вызвать опасную коррозию.

Ванадиевую коррозию можно предотвратить снижением допустимой температуры металла элементов котла и организацией горения с минимальными коэффициентами избытка воздуха а = 1,03 + 1,04.

Низкотемпературная (кислотная) коррозия поражает в основном хвостовые поверхности нагрева. В продуктах сгорания сернистых мазутов всегда присутствуют пары воды и соединения серы, образующие при соединении друг с другом серную кислоту. При омывании газами относительно холодных хвостовых поверхностей нагрева пары серной кислоты конденсируется на них и вызывают коррозию металла. Интенсивность низкотемпературной коррозии зависит от концентрации серной кислоты в пленке влаги, оседающей на поверхностях нагрева. При этом концентрация Б03 в продуктах сгорания определяется не только содержанием серы в топливе. Основными факторами, влияющими на скорость протекания низкотемпературной коррозии, являются;

Условия протекания реакции горения в топке. При повышении коэффициента избытка воздуха увеличивается процентное содержание газа Б03 (при а = 1,15 окисляется 3,6 % серы, содержащейся в топливе; при а = 1,7 окисляется около 7 % серы). При коэффициентах избытка воздуха а = 1,03 - 1,04 серного ангидрида Б03 практически не образуется;

Состояние поверхностей нагрева;

Питание котла слишком холодной водой, вызывающей понижение температуры стенок труб экономайзера ниже тоски росы для серной кислоты;

Концентрация воды в топливе; при сжигании обводненных топлив точка росы повышается вследствие повышения парциального давления водяных паров в продуктах сгорания.

Стояночная коррозия поражает внешние поверхности труб и коллекторов, обшивку, топочные устройства, арматуру и другие элементы газовоздушного тракта котла. Сажа, образующаяся при сжигании топлива, покрывает поверхности нагрева и внутренние части газовоздушного тракта котла. Сажа гигроскопична, и при остывании котла легко впитывает влагу, вызывающую коррозию. Коррозия носит язвенный характер при образовании на поверхности металла пленки раствора серной кислоты при остывании котла и снижении температуры его элементов ниже точки росы для серной кислоты.

Борьба со стояночной коррозией основана на создании условий, исключающих попадание влаги на поверхности котельного металла, а также нанесением антикоррозионных покрытий на поверхности элементов котлов.

При кратковременном бездействии котлов после осмотра и чистки поверхностей нагрева с целью предотвращения попадания атмосферных осадков в газоходы котлов на дымовую трубу необходимо одевать чехол, закрывать воздушные регистры, смотровые отверстия. Необходимо постоянно контролировать влажность и температуру в МКО.

Для предотвращения коррозии котлов во время бездействия используются различные способы хранения котлов. Различают два способа хранения; мокрое и сухое.

Основным способом хранения котлов является мокрое хранение. Оно предусматривает полное заполнение котла питательной водой, пропущенной через электроно-ионообменные и обескислораживающие фильтры, включая пароперегреватель и экономайзер. Держать котлы на мокром хранении можно не более 30 суток. В случае более длительного бездействия котлов применяется сухое хранение котла.

Сухое хранение предусматривает полное осушение котла от воды с размещением в коллекторах котла бязевых мешочков с селикагелем, поглощающим влагу. Периодически производится вскрытие коллекторов, контрольный замер массы селикагеля с целью определения массы поглощенной влаги, и выпаривание поглощенной влаги из селикагеля.

Ряд электростанций использует для подпитки тепловых сетей речные и водопроводные воды с низким значением рН и малой жесткостью. Дополнительная обработка речной воды на водопроводной станции обычно приводит к снижению рН, уменьшению щелочности и повышению содержания агрессивной углекислоты. Появление агрессивной углекислоты возможно также в схемах подкисления, применяемых для крупных систем теплоснабжения с непосредственным водоразбором горячей воды (2000–3000 т/ч). Умягчение воды по схеме Na‑катионирования повышает ее агрессивность вследствие удаления природных ингибиторов коррозии – солей жесткости.

При плохо налаженной деаэрации воды и возможных повышениях концентраций кислорода и углекислоты из-за отсутствия дополнительных защитных мероприятий в системах теплоснабжения внутренней коррозии подвержены трубопроводы, теплообменные аппараты, аккумуляторные баки и другое оборудование.

Известно, что повышение температуры способствует развитию коррозионных процессов, протекающих как с поглощением кислорода, так и с выделением водорода. С увеличением температуры выше 40 °С кислородная и углекислотная формы коррозии резко усиливаются.

Особый вид подшламовой коррозии протекает в условиях незначительного содержания остаточного кислорода (при выполнении норм ПТЭ) и при количестве окислов железа более 400 мкг/дм 3 (в пересчете на Fe). Этот вид коррозии, ранее известный в практике эксплуатации паровых котлов, был обнаружен в условиях сравнительно слабого подогрева и отсутствия тепловых нагрузок. В этом случае рыхлые продукты коррозии, состоящие в основном из гидратированных трехвалентных окислов железа, являются активными деполяризаторами катодного процесса.

При эксплуатации теплофикационного оборудования нередко наблюдается щелевая коррозия, т. е. избирательное, интенсивное коррозионное разрушение металла в щели (зазоре). Особенностью процессов, протекающих в узких зазорах, является пониженная концентрация кислорода по сравнению с концентрацией в объеме раствора и замедленный отвод продуктов коррозионной реакции. В результате накопления последних и их гидролиза возможно снижение рН раствора в щели.

При постоянной подпитке тепловой сети с открытым водоразбором деаэрированной водой возможность образования сквозных свищей на трубопроводах полностью исключается только при нормальном гидравлическом режиме, когда во всех точках системы теплоснабжения постоянно поддерживается избыточное давление выше атмосферного.

Причины язвенной коррозии труб водогрейных котлов и другого оборудования следующие: некачественная деаэрация подпиточной воды; низкое значение рН, обусловленное присутствием агрессивной углекислоты (до 10–15 мг/дм 3); накопление продуктов кислородной коррозии железа (Fe 2 O 3) на теплопередающих поверхностях. Повышенное содержание окислов железа в сетевой воде способствует заносу поверхностей нагрева котла железоокисными отложениями.

Ряд исследователей признает важную роль в возникновении подшламовой коррозии процесса ржавления труб водогрейных котлов при их простоях, когда не принято должных мер для предупреждения стояночной коррозии. Очаги коррозии, возникающие под воздействием на влажные поверхности котлов атмосферного воздуха, продолжают функционировать при работе котлов.

2.1. Поверхности нагрева.

Наиболее характерными повреждениями труб поверхностей нагрева являются: трещины поверхности экранных и кипятильных труб, коррозионные разъедания наружных и внутренних поверхностей труб, разрывы, утонения стенок труб, трещины и разрушения колокольчиков.

Причины появления трещин, разрывов и свищей: отложения в трубах котлов солей, продуктов коррозии, сварочного грата, замедляющих циркуляцию и вызывающих перегрев металла, внешние механические повреждения, нарушение водно-химического режима.

Коррозия наружной поверхности труб подразделяется на низкотемпературную и высокотемпературную. Низкотемпературная коррозия возникает в местах установки обдувочных приборов, когда в результате неправильной эксплуатации допускается образование конденсата на занесенных сажей поверхностях нагрева. Высокотемпературная коррозия может иметь место на второй ступени пароперегревателя при сжигании сернистого мазута.

Наиболее часто встречается коррозия внутренней поверхности труб, возникающая при взаимодействии коррозионноактивных газов (кислорода, углекислоты) или солей (хлоридов и сульфатов), содержащихся в котловой воде, с металлом труб. Коррозия внутренней поверхности труб проявляется в образовании оспин, язв, раковин и трещин.

К коррозии внутренней поверхности труб также относятся: кислородная стояночная коррозия, подшламовая щелочная коррозия кипятильных и экранных труб, коррозионная усталость, проявляющаяся в виде трещин в кипятильных и экранных трубах.

Повреждения труб из-за ползучести характеризуются увеличением диаметра и образованием продольных трещин. Деформации в местах гибов труб и сварных соединений могут иметь различные направления.

Прогары и окалннообразовання в трубах происходят вследствие их перегрева до температур, превышающих расчетную.

Основные виды повреждений сварных швов выполненных ручной дуговой сваркой - свищи, возникающие из-за непроваров, шлаковых включений, газовых пор, несплавления по кромкам труб.

Основными дефектами и повреждениями поверхности пароперегревателя являются: коррозия и окалинообразование на наружной и внутренней поверхности труб, трещины, риски и расслоение металла труб, свищи и разрывы труб, дефекты сварных соединений труб, остаточная деформация в результате ползучести.

Повреждения угловых швов приварки змеевиков и штуцеров к коллекторам, вызывающие нарушением технологии сварки, имеют вид кольцевых трещин вдоль линии сплавления со стороны змеевика или штуцеров.

Характерными неисправностями, возникающими при эксплуатации поверхностного пароохладителя котла ДЕ-25-24-380ГМ являются: внутренняя и наружная коррозия труб, трещины и свищи в сварных

швах и на гибах труб, раковины, могущие возникнуть при ремонтах, риски на зеркале фланцев, течи фланцевых соединений вследствие перекоса фланцев. При гидравлическом испытании котла можно

определить только наличие неплотностей в пароохладителе. Для выявления скрытых дефектов следует провести индивидуальное гидравлическое испытание пароохладителя.

2.2. Барабаны котла.

Характерными повреждениями барабанов котла являются: трещины-надрывы на внутренней и наружной поверхности обечаек и днищ, трещины-надрывы вокруг трубных отверстий на внутренней поверхности барабанов и на цилиндрической поверхности трубных отверстий, межкристаллитная коррозия обечаек и днищ, коррозионные разъединения поверхностей обечаек и днищ, овальность барабана оддулины (выпучины) на поверхностях барабанов, обращенных в топку, вызванные температурным воздействием факела в случаях разрушения (или выпадения) отдельных частей футеровки.

2.3. Металлоконструкции и обмуровка котла.

В зависимости от качества профилактической работы, а также от режимов и сроков эксплуатации котла, его металлоконструкции могут иметь следующие дефекты и повреждения: разрывы и изгибы стоек и связей, трещины, коррозионные повреждения поверхности металла.

В результате длительного воздействия температур имеют место растрескивание и нарушение целостности фасонного кирпича, закрепляемого на штырях к верхнему барабану со стороны топки, а также трещины в кирпичной кладке по нижнему барабану и поду топки.

Особенно часто встречается разрушение кирпичной амбразуры горелки и нарушение геометрических размеров за счет оплавления кирпича.

3. Проверки состояния элементов котла.

Проверка состояния элементов котла, выведенного в ремонт, производится по результатам гидравлического испытания, наружного и внутреннего осмотра, а также других видов контроля, проводимых в объеме и соответствии с программой экспертного обследования котла (раздел «Программа экспертного обследования котлов»).

3.1. Проверка поверхностей нагрева.

Осмотр наружных поверхностей трубных элементов особенно тщательно необходимо производить в местах прохода труб через обмуровку, обшивку, в зонах максимальных тепловых напряжении - в районе горелок, лючков, лазов, а также в местах гибов экранных труб и на сварных швах.

Для предупреждения аварии, связанных с утонением стенок труб вследствие сернистой и стояночной коррозии, необходимо при ежегодных технических освидетельствованиях, проводимых администрацией предприятия, производить контроль труб поверхностей нагрева котлов, эксплуатируемых более двух лет.

Контроль производится внешним осмотром с обстукиванием предварительно очищенных наружных поверхностей труб молотком массой не более 0,5 кг и измерением толщины стенок труб. При этом следует выбирать участки труб, подвергшиеся наибольшему износу и коррозии (горизонтальные участки, участки в отложениях сажи и покрытые коксовыми отложениями).

Измерение толщины стенок труб производится ультразвуковыми толщиномерами. Возможно вырезание участков труб на двух-трех трубах топочных экранов и трубах конвективного пучка, расположенных на входе газов в него и выходе. Оставшаяся толщина стенок труб должна быть не менее расчетной согласно расчету на прочность (прилагаемого к Паспорту котла) с учетом прибавки на коррозию на период дальнейшей эксплуатации до следующего освидетельствования и прибавки запаса 0,5 мм.

Расчетная толщина стенки экранных и кипятильных труб для рабочего давления 1,3 МПа (13 кгс/см 2) составляет 0,8 мм, для 2,3 МПа (23 кгс/см 2) – 1,1 мм. Прибавка на коррозию принимается по полученным результатам замеров и с учетом длительности эксплуатации между освидетельствованиями.

На предприятиях, где в результате длительной эксплуатации не наблюдалось интенсивного износа труб поверхностей нагрева, контроль толщины стенок труб может производится при капитальных ремонтах, но не реже 1 раза в 4 года.

Внутреннему осмотру подлежат коллектора, пароперегревателя и заднего, экрана. Обязательному вскрытию и осмотру должны быть подвергнуты лючки верхнего коллектора заднего экрана.

Наружный диаметр труб должен измеряться в зоне максимальных температур. Для измерений применять специальные шаблоны (скобы) или штангенциркуль. На поверхности труб допускаются вмятины с плавными переходами глубиной не более 4 мм, если они не выводят толщину стенки за пределы минусовых отклонений.

Допускаемая разностенность труб - 10%.

Результаты осмотра и измерений заносятся в ремонтный формуляр.

3.2. Проверка барабана.

Дня выявления участков барабана, поврежденных коррозией, необходимо осмотреть поверхность до внутренней очистки с целью определения интенсивности коррозии измерить глубину разъедания металла.

Равномерные разъедания измерить по толщине стенки, в которой для этой цели просверлить отверстие диаметром 8 мм. После измерения в отверстие установить пробку и обварить с двух сторон или, в крайнем случае, только изнутри барабана. Измерение можно также производить ультразвуковым толщиномером.

Основные разъедания и язвины измерить, по оттискам. Для этой цели поврежденный участок поверхности металла очистить от отложений и слегка смазать техническим вазелином. Наиболее точный отпечаток получается, если поврежденный участок расположен на горизонтальной поверхности и в этом случае имеется возможность залить его расплавленным металлом с низкой температурой плавления. Затвердевший металл образует точный слепок поврежденной поверхности.

Для получения отпечатков, пользоваться третником, баббитом, оловом, по возможности применять гипс.

Оттиски повреждений, расположенных на вертикальных потолочных поверхностях, получить, используя воск и пластилин.

Осмотр трубных отверстий, барабанов проводится в следующем порядке.

После удаления развальцованных труб проверить диаметр отверстий при помощи шаблона. Если шаблон входит в отверстие до упорного выступа, то это означает, что диаметр отверстия увеличен сверх нормы. Измерение точной величины диаметра осуществляется штангенциркулем и отмечается в ремонтном формуляре.

При контроле сварных швов барабанов необходимо подвергать проверке прилегающий к ним основной металл на ширину 20-25 мм по обе стороны от шва.

Овальность барабана измеряется не менее чем через каждые 500 мм по длине барабана, в сомнительных случаях и чаще.

Измерение прогиба барабана осуществляется путем натяжки струны вдоль поверхности барабана и замера зазоров по длине струны.

Контроль поверхности барабана, трубных отверстий и сварных соединений производится внешним осмотром, методами, магнитопорошковой, цветной и ультразвуковой дефектоскопии.

Допускаются (не требуют выправки) отдулины и вмятины вне зоны швов и отверстий при условии, что их высота (прогиб), в процентах от наименьшего размера их основания, будет не более:

    в сторону атмосферного давления (отдулины) - 2%;

    в сторону давления пара (вмятины) - 5%.

Допускаемое уменьшение толщины стенки днища - 15%.

Допускаемое увеличение диаметра отверстий для труб (под сварку) - 10%.

Эта коррозия по размеру и интенсивности часто бывает более значительной и опасной, чем коррозия котлов во время их работы.

При оставлении воды в системах в зависимости от ее температуры и доступа воздуха могут встречаться самые разнообразные случаи проявления стояночной коррозии. Следует прежде всего отметить крайнюю нежелательность наличия воды в трубах агрегатов при нахождении их в резерве.

Если вода по тем или иным причинам остается в системе, то может наблюдаться сильная стояночная коррозия в паровом и особенно в водяном пространстве емкости (преимущественно по ватерлинии) при температуре воды 60—70°С. Поэтому на практике довольно часто наблюдается различная по интенсивности стояночная коррозия, несмотря на одинаковые режимы останова системы и качество содержащейся в них воды; аппараты со значительной тепловой аккумуляцией подвергаются более сильной коррозии, чем аппараты, имеющие размеры топки и поверхность нагрева, так как котловая вода в них быстрее охлаждается; температура ее становится ниже 60—70°С.

При температуре воды выше 85—90°С (например, при кратковременных остановах аппаратов) общая коррозия снижается, причем коррозия металла парового пространства, в котором наблюдается в этом случае повышенная конденсация паров, может превышать коррозию металла водяного пространства. Стояночная коррозия в паровом пространстве во всех случаях более равномерная, чем в водяном пространстве котла.

Развитию стояночной коррозии сильно способствует скапливающийся на поверхностях котла шлам, который обычно удерживает влагу. В связи с этим значительные коррозионные раковины часто обнаруживаются в агрегатах и трубах вдоль нижней образующей и на их концах, т. е. на участках наибольшего скопления шлама.

Способы консервации оборудования, находящегося в резерве

Для консервации оборудования могут быть применены следующие способы:

а) высушивание — удаление из агрегатов воды и влаги;

б) заполнение их растворами едкого натра, фосфата, силиката, нитрита натрия, гидразина;

в) заполнение технологической системы азотом.

Способ консервации следует выбирать в зависимости от характера и длительности простоя, а также от типа и конструктивных особенностей оборудования.

Простои оборудования по продолжительности можно разделить на две группы: кратковременные—не более 3 сут и длительные — более 3 сут.

Различают два вида кратковременных простоев:

а) плановые, связанные с выводом в резерв на выходные дни в связи с падением нагрузки или выводом в резерв на ночное время;

б) вынужденные — из-за выхода из строя труб или повреждений других узлов оборудования, для устранения которых не требуется более длительный останов.

В зависимости от цели длительные простои можно разделить на следующие группы: а) вывод оборудования в резерв; б) текущие ремонты; в) капитальные ремонты.

При кратковременных простоях оборудования необходимо использовать консервацию путем заполнения деаэрированной водой с поддержанием избыточного давления или газовый (азотный) способ. Если необходим аварийный останов, то единственно приемлемый способ — консервация азотом.

При выводе системы в резерв или длительном простое без выполнения ремонтных работ консервацию целесообразно вести путем заполнения раствором нитрита или силиката натрия. В этих случаях можно использовать и азотную консервацию, обязательно принимая меры для создания плотности системы с целью предотвращения чрезмерного расхода газа и непроизводительной работы азотной установки, а также создания безопасных условий при обслуживании оборудования.

Способы консервации путем создания избыточного давления, заполнения азотом можно использовать независимо от конструктивных особенностей поверхностей нагрева оборудования.

Для предотвращения стояночной коррозии металла во время капитального и текущего ремонтов применимы только способы консервации, позволяющие создать на поверхности металла защитную пленку, сохраняющую свойства в течение не менее 1—2 мес после слива консервирующего раствора, поскольку опорожнение и разгерметизация системы неизбежны. Срок действия защитной пленки на поверхности металла после обработки ее нитритом натрия может достигать 3 мес.

Способы консервации с использованием воды и растворов реагентов практически неприемлемы для защиты от стояночной коррозии промежуточных пароперегревателей котлов из-за трудностей, связанных с их заполнением и последующей отмывкой.

Способы консервации водогрейных и паровых котлов низкого давления, а также другого оборудования замкнутых технологических контуров тепло- и водоснабжения во многом отличаются от применяемых в настоящее время методов предупреждения стояночной коррозии на ТЭС. Ниже описываются основные способы предупреждения коррозии в режиме простаивания оборудования аппаратов подобных циркуляционных систем с учетом специфики их работы.

Упрощенные способы консервации

Эти способы целесообразно применять для мелких котлов. Они заключаются в полном удалении воды из котлов и размещении в них влагопоглотителей: прокаленного хлористого кальция, негашеной извести, силикагеля из расчета 1—2 кг на 1 м 3 объема.

Этот способ консервации пригоден при температурах помещения ниже и выше нуля. В помещениях, отапливаемых в зимнее время, может быть реализован один из контактных способов консервации. Он сводится к заполнению всего внутреннего объема агрегата щелочным раствором (NaOH, Na 3 P0 4 и др.), обеспечивающим полную устойчивость защитной пленки на поверхности металла даже при насыщении жидкости кислородом.

Обычно применяют растворы, содержащие от 1,5— 2 до 10 кг/м 3 NaOH или 5—20 кг/м 3 Na 3 P0 4 в зависимости от содержания нейтральный солей в исходной воде. Меньшие значения относятся к конденсату, большие — к воде, содержащей до 3000 мг/л нейтральных солей.

Коррозию можно предупредить также способом избыточного давления, при котором давление пара в остановленном агрегате постоянно поддерживается на уровне выше атмосферного давления, а температура воды остается выше 100°С, чем предотвращается доступ основного коррозионного агента — кислорода.

Важное условие эффективности и экономичности любого способа защиты — максимально возможная герметичность паро-водяной арматуры во избежание слишком быстрого снижения давления, потерь защитного раствора (или газа) или попадания влаги. Кроме того, во многих случаях полезна предварительная очистка поверхностей от различных отложений (солей, шлама, накипи).

При осуществлении различных способов защиты от стояночной коррозии необходимо иметь в виду следующее.

1. При всех видах консервации необходимо предварительное удаление (промывка) отложений легкорастворимых солей (см. выше) во избежание усиления стояночной коррозии на отдельных участках защищаемого агрегата. Обязательным является осуществление этого мероприятия при контактной консервации, иначе возможна интенсивная местная коррозия.

2. По аналогичным соображениям желательно удаление перед длительной консервацией всех видов нерастворимых отложений (шлама, накипи, оксидов железа).

3. При ненадежности арматуры необходимо отключение резервного оборудования от работающих агрегатов с помощью заглушек.

Просачивание пара и воды менее опасно при контактной консервации, но недопустимо при сухом и газовом методах защиты.

Выбор влагопоглотителей определяется сравнительной доступностью реагента и желательностью получения максимально возможной удельной влагоемкости. Наилучший влагопоглотитель — зерненый хлористый кальций. Негашеная известь значительно хуже хлористого кальция не только вследствие меньшей влагоемкости, но и быстрой потери ее активности. Известь поглощает из воздуха не только влагу, но и углекислоту, в результате чего она покрывается слоем углекислого кальция, препятствующего дальнейшему поглощению влаги.