Схема конденсатора турбины пт 80. По эксплуатации паровой турбины

И Н С Т Р У К Ц И Я

ПТ-80/100-130/13 ЛМЗ.

Инструкцию должны знать:

1. начальник котлотурбинного цеха-2,

2. заместители начальника котлотурбинного цеха по эксплуатации-2,

3. старший начальник смены станции-2,

4. начальник смены станции-2,

5. начальник смены турбинного отделения котлотурбинного цеха-2,

6. машинист ЦТЩУ паровыми турбинами VI разряда,

7. машинист-обходчик по турбинному оборудованию V разряда;

8. машинист-обходчик по турбинному оборудованию IV разряда.

Г. Петропавловск – Камчатский

ОАО Энергетики и Электрификации “ Камчатскэнерго ”.

Филиал "Камчатские ТЭЦ" .

УТВЕРЖДАЮ:

Главный инженер филиала ОАО "Камчатскэнерго" КТЭЦ

Болотенюк Ю.Н.

“ “ 20 г.

И Н С Т Р У К Ц И Я

По эксплуатации паровой турбины

ПТ-80/100-130/13 ЛМЗ.

Срок действия инструкции:

с «____» ____________ 20 г.

по «____»____________ 20 г.

Петропавловск – Камчатский

1. Общие положения…………………………………………………………………… 6

1.1. Критерии безопасной экплуатации паровой турбины ПТ80/100-130/13………………. 7

1.2. Технические данные турбины……………………………………………………………...….. 13

1.4. Защиты турбины………………………………………………………………….……………… 18

1.5. Турбина должна быть аварийно остановлена со срывом вакуума вручную…………...... 22

1.6. Турбина должна быть немедленно остановлена…………………………………………...… 22

Турбина должна быть разгружена и остановлена в период,

определенный главным инженером электростанции……………………………..……..… 23

1.8. Допускается длительная работа турбины с номинальной мощностью…………………... 23

2. Краткое описание конструкции турбины…………………………………..… 23

3. Система маслоснабжения турбоагрегата…………………………………..…. 25

4. Система уплотнения вала генератора……………………………………....… 26

5. Система регулирования турбины…………………………………………...…. 30

6. Технические данные и описание генератора……………………………….... 31

7. Техническая характеристика и описание конденсационной установки…. 34

8. Описание и техническая характеристика регенеративной установки…… 37

Описание и техническая характеристика установки для

подогрева сетевой воды……………………………………………………...… 42

10. Подготовка турбоагрегата к пуску………………………………………….… 44



10.1. Общие положения……………………………………………………………………………...….44

10.2. Подготовка к включению в работу масляной системы…………………………………...…….46

10.3. Подготовка системы регулирования к пуску……………………………………………..…….49

10.4. Подготовка и пуск регенеративной и конденсационной установки……………………………49

10.5. Подготовка к включению в работу установки для подогрева сетевой воды……………….....54

10.6. Прогрев паропровода до ГПЗ………………………………………………………………….....55

11. Пуск турбоагрегата…………………………………………………………..… 55

11.1. Общие указания………………………………………………………………………………….55

11.2. Пуск турбины из холодного состояния………………………………………………………...61

11.3. Пуск турбины из неостывшего состояния………………………………………………….…..64

11.4. Пуск турбины из горячего состояния…………………………………………………………..65

11.5. Особенности пуска турбины на скользящих параметрах свежего пара………………….…..67

12. Включение производственного отбора пара………………………………... 67

13. Отключение производственного отбора пара…………………………….… 69

14. Включение теплофикационного отбора пара……………………………..…. 69

15. Отключение теплофикационного отбора пара………………………….…... 71

16. Обслуживание турбины во время нормальной работы………………….… 72

16.1 Общие положения……………………………………………………………………………….72

16.2 Обслуживание конденсационной установки…………………………………………………..74

16.3 Обслуживание регенеративной установки………………………………………………….….76

16.4 Обслуживание системы маслоснабжения……………………………………………………...87

16.5 Обслуживание генератора………………………………………………………………………79

16.6 Обслуживание установки для подогрева сетевой воды………………………………….……80

17. Останов турбины………………………………………………………………… 81



17.1 Общие указания по останову турбины…………………………………………………….……81

17.2 Останов турбины в резерв, а также для ремонта без расхолаживания……………………..…82

17.3 Останов турбины в ремонт с расхолаживанием………………………………………………...84

18. Требования по технике безопасности…………………………………….…… 86

19. Мероприятия по предупреждению и ликвидации аварий на турбине…… 88

19.1. Общие указания……………………………………………………………………………………88

19.2. Случаи аварийного останова турбины………………………………………………………...…90

19.3. Действия, выполняемые технологическими защитами турбины………………………………91

19.4. Действия персонала при аварийном положении на турбине……………………………..…….92

20. Правила допуска к ремонту оборудования……………………………….… 107

21. Порядок допуска к испытаниям турбины………………………………….. 108

Приложения

22.1. График пуска турбины из холодного состояния (температура металла

ЦВД в зоне паровпуска менее 150 ˚С)……………………………………………………..… 109

22.2. График пуска турбины после простоя 48 часов (температура металла

ЦВД в зоне паровпуска 300 ˚С)………………………………………………………………..110

22.3. График пуска турбины после простоя 24 часа (температура металла

ЦВД в зоне паровпуска 340 ˚С)……………………………………………………………..…111

22.4. График пуска турбины после простоя 6-8 часов (температура металла

ЦВД в зоне паровпуска 420 ˚С)……………………………………………………………….112

22.5. График пуска турбины после простоя 1-2 часа (температура металла

ЦВД в зоне паровпуска 440 ˚С)……………………………………………………..…………113

22.6. Ориентировочные графики пуска турбины на номинальных

параметрах свежего пара…………………………………………………………………….…114

22.7. Продольный разрез турбины……………………………………………………………..….…115

22.8. Схема регулирования турбины……………………………………………………………..….116

22.9. Тепловая схема турбоустановки…………………………………………………………….….118

23. Дополнения и изменения…………………………………………………...…. 119

ОБЩИЕ ПОЛОЖЕНИЯ.

Турбина паровая типа ПТ-80/100-130/13 ЛМЗ с производственным и 2-ступенчатым теплофикационным отбором пара, номинальной мощностью 80 мВт и максимальной 100 МВт (в определенном сочетании регулируемых отборов) предназначена для непосредственного привода генератора переменного тока ТВФ-110-2Е У3 мощностью 110 МВт, смонтированного на общем фундаменте с турбиной.

Перечень сокращений и условных обозначений:

АЗВ - автоматический затвор высокого давления;

ВПУ - валоповоротное устройство;

ГМН - главный масляный насос;

ГПЗ - главная паровая задвижка;

КОС - клапан обратный с сервомотором;

КЭН - конденсатный электронасос;

МУТ - механизм управления турбиной;

ОМ - ограничитель мощности;

ПВД - подогреватели высокого давления;

ПНД - подогреватели низкого давления;

ПМН - пусковой масляный электронасос;

ПН - охладитель пара уплотнений;

ПС - охладитель пара уплотнений с эжектором;

ПСГ-1 - сетевой подогреватель нижнего отбора;

ПСГ-2 - то же, верхнего отбора;

ПЭН - питательный электронасос;

РВД - ротор высокого давления;

РК - регулирующие клапаны;

РНД - ротор низкого давления;

РТ - ротор турбоагрегата;

ЦВД - цилиндр высокого давления;

ЦНД - цилиндр низкого давления;

РМН - резервный масляный насос;

АМН - аварийный масляный насос;

РПДС - реле падения давления масла в системе смазки;

Рпр - давление пара в камере производственного отбора;

Р - давление в камере нижнего теплофикационного отбора;

Р - то же, верхнего теплофикационного отбора;

Дпо - расход пара в производственный отбор;

Д - расход суммарный на ПСГ-1,2;

КАЗ - клапан автоматического затвора;

МНУВ - маслонасос уплотнения вала генератора;

НОГ - насос охлаждения генератора;

САР - система автоматического регулирования;

ЭГП - электрогидравлический преобразователь;

КИС - клапан исполнительный соленоидный;

ТО - теплофикационный отбор;

ПО - производственный отбор;

МО - маслоохладитель;

РПД - регулятор перепада давления;

ПСМ - передвижной сепаратор масла;

ЗГ - затвор гидравлический;

БД - бак демпферный;

ИМ - инжектор масляный;

РС - регулятор скорости;

РД - регулятор давления.


1.1.1. По мощности турбины:

Максимальная мощность турбины при полностью включенной

регенерации и определенных сочетаниях производственного и

теплофикационного отборов …………………………………………………………………...100 МВт

Максимальная мощность турбины на конденсационном режиме при отключенных ПВД-5, 6, 7 ……………………………………………………………………... 76 МВт

Максимальная мощность турбины на конденсационном режиме при отключенных ПНД-2, 3, 4 ……………………………………………………………………....71МВт

Максимальная мощность турбины на конденсационном режиме при отключенных

ПНД-2, 3, 4 и ПВД-5, 6, 7 ………………………………………………………………………….68 МВт

которой включаются в работу ПВД-5,6,7………………………………………………………..10 МВт

Минимальная мощность турбины на конденсационном режиме при

которой включается в работу сливной насос ПНД-2…………………………………………….20 МВт

Минимальная мощность турбоагрегата при которой включаются в

работу регулируемые отборы турбины…………………………………………………………… 30 МВт

1.1.2. По частоте вращения ротора турбины:

Номинальная частота вращения ротора турбины ……………………………………………..3000 об/мин

Номинальная частота вращения ротора турбины валоповоротным

устройством ……………………………………………………………………………..………..3,4 об/мин

Предельное отклонение частоты вращения ротора турбины при

котором турбоагрегат отключается защитой…………………………………….………..…..3300 об/мин

3360 об/мин

Критическая частота вращения ротора турбогенератора …………………………………….1500 об/мин

Критическая частота вращения ротора низкого давления турбины…………………….……1600 об/мин

Критическая частота вращения ротора высокого давления турбины…………………….….1800 об/мин

1.1.3. По расходу перегретого пара на турбину:

Номинальный расход пара на турбину при работе ее на конденсационном режиме

с полностью включенной системой регенерации (при номинальной мощности

турбоагрегата, равной 80 МВт) ………………………………………………………………305 т/час

Максимальный расход пара на турбину при включенных в работу системе

регенерации, регулируемых производственном и теплофикационных отборах

и закрытом регулирующем клапане №5 …..…………………………………………………..415 т/час

Максимальный расход пара на турбину …………………….…………………..………………470 т/час

режиме с отключенными ПВД-5, 6, 7 …………………………………………………………..270 т/час

Максимальный расход пара на турбину при работе ее на конденсационном

режиме с отключенными ПНД-2, 3, 4 ………………………………………...………………..260т/час

Максимальный расход пара на турбину при работе ее на конденсационном

режиме с отключенными ПНД-2, 3, 4 и ПВД-5, 6, 7………………………………………..…230т/час

1.1.4. По абсолютному давлению перегретого пара перед АЗВ:

Номинальное абсолютное давление перегретого пара перед АЗВ…………………..……….130 кгс/см 2

Допустимое снижение абсолютного давления перегретого пара

перед АЗВ при работе турбины…….……………………………………………………………125 кгс/см 2

Допустимое повышение абсолютного давления перегретого пара

перед АЗВ при работе турбины.…………………………………………………………………135 кгс/см 2

Максимальное отклонение абсолютного давления перегретого пара перед АЗВ

при работе турбины и при продолжительности каждого отклонения не более 30 мин……..140 кгс/см 2

1.1.5. По температуре перегретого пара перед АЗВ:

Номинальная температура перегретого пара перед АЗВ..…………………………………..…..555 0 С

Допустимое снижение температуры перегретого пара

перед АЗВ при работе турбины..………………………………………………………….……… 545 0 С

Допустимое повышение температуры перегретого пара перед

АЗВ при работе турбины………………………………………………………………………….. 560 0 С

Максимальное отклонение температуры перегретого пара перед АЗВ при

работе турбины и продолжительности каждого отклонения не более 30

минут………………….………………..…………………………………………………….………565 0 С

Минимальное отклонение температуры перегретого пара перед АЗВ при

котором турбоагрегат отключается защитой……………………………………………………...425 0 С

1.1.6. По абсолютному давлению пара в регулирующих ступенях турбины:

при расходах перегретого пара на турбину до 415 т/час. ..……………………………………...98,8 кгс/см 2

Максимальное абсолютное давление пара в регулирующей ступени ЦВД

при работе турбины на конденсационном режиме с отключенными ПВД-5, 6, 7….……….…64 кгс/см 2

Максимальное абсолютное давление пара в регулирующей ступени ЦВД

при работе турбины на конденсационном режиме с отключенными ПНД-2, 3, 4 ………….…62 кгс/см 2

Максимальное абсолютное давление пара в регулирующей ступени ЦВД

при работе турбины на конденсационном режиме с отключенными ПНД-2, 3, 4

и ПВД-5, 6,7……………………………………………………………………..……….……… .....55 кгс/см 2

Максимальное абсолютное давление пара в камере перегрузочного

клапана ЦВД (за 4-ступенью) при расходах перегретого пара на турбину

более 415 т/час ………………………………………………………………………………………83 кгс/см 2

Максимальное абсолютное давление пара в камере регулирующей

ступени ЦНД (за 18 ступенью) ……………………………..……………………………………..13,5 кгс/см 2

1.1.7. По абсолютному давлению пара в регулируемых отборах турбины:

Допустимое повышение абсолютного давления пара в

регулируемом производственном отборе …………………………………………………………16 кгс/см 2

Допустимое снижение абсолютного давления пара в

регулируемом производственном отборе …………………………………………………………10 кгс/см 2

Максимальное отклонение абсолютного давления пара в регулируемом производственном отборе при котором срабатывают предохранительные клапаны ……………………………………………………………………..19,5 кгс/см 2

верхнем теплофикационном отборе ………………………………………………………….…..2,5 кгс/см 2

верхнем теплофикационном отборе ………………………………………………………..……..0,5 кгс/см 2

Максимальное отклонение абсолютного давления пара в регулируемом

верхнем теплофикационном отборе при котором срабатывает

предохранительный клапан…………………………………………………………………..……3,4 кгс/см 2

Максимальное отклонение абсолютного давления пара в

регулируемом верхнем теплофикационном отборе при котором

турбоагрегат отключается защитой…………………………………………..…………………...3,5 кгс/см 2

Допустимое повышение абсолютного давления пара в регулируемом

нижнем теплофикационном отборе ………………………………………………………….……1 кгс/см 2

Допустимое снижение абсолютного давления пара в регулируемом

нижнем теплофикационном отборе …………………………………………………………….…0,3 кгс/см 2

Предельно допустимое снижение перепада давлений между камерой

нижнего теплофикационного отбора и конденсатором турбины………………………….… до 0,15 кгс/см 2

1.1.8. По расходу пара в регулируемые отборы турбины:

Номинальный расход пара в регулируемый производственный

отбор ………………………………………………………………………………………….……185 т/час

Максимальный расход пара в регулируемый производственный…

номинальной мощности турбины и отключенном

теплофикационном отборе ……………………………………………………………….………245 т/час

Максимальный расход пара в регулируемый производственный

отбор при абсолютном давлении в нем, равном 13 кгс/см 2 ,

сниженной до 70 МВт мощности турбины и отключенном

теплофикационном отборе …………………………………………………………………..……300 т/час

Номинальный расход пара в регулируемый верхний

теплофикационный отбор ………………………………………………………………………...132 т/час

и отключенном производственном отборе ………………………………………………………150 т/час

Максимальный расход пара в регулируемый верхний

теплофикационный отбор при сниженной до 76 МВт мощности

турбины и отключенном производственном отборе ……………………………………….……220 т/час

Максимальный расход пара в регулируемый верхний

теплофикационный отбор при номинальной мощности турбины

и сниженном до 40 т/час расходе пара в производственный отбор ……………………………200 т/час

Максимальный расход пара в ПСГ-2 при абсолютном давлении

в верхнем теплофикационном отборе 1,2 кгс/см 2 …………………………………………….…145 т/час

Максимальный расход пара в ПСГ-1 при абсолютном давлении

в нижнем теплофикационном отборе 1 кгс/см 2 ………………………………………………….220 т/час

1.1.9. По температуре пара в отборах турбины:

Номинальная температура пара в регулируемом производственном

отборе после ОУ-1, 2 (3,4) …………………………………………………………………………..280 0 С

Допустимое повышение температуры пара в регулируемом

производственном отборе после ОУ-1, 2 (3,4) …………………………………………………....285 0 С

Допустимое снижение температуры пара в регулируемом

производственном отборе после ОУ-1,2 (3,4) ………………………………………………….…275 0 С

1.1.10. По тепловому состоянию турбины:

Максимальная скорость повышения температуры металла

…..………………………………..15 0 С/мин.

перепускных труб от АЗВ к регулирующим клапанам ЦВД

при температурах перегретого пара ниже 450 град.С.…………………………………….………25 0 С

Предельно допустимая разность температур металла

перепускных труб от АЗВ к регулирующим клапанам ЦВД

при температуре перегретого пара выше 450 град.С.……………………………………….…….20 0 С

Предельно допустимая разность температур металла верха

и низа ЦВД (ЦНД) в зоне паровпуска ………………….…………………………………………..50 0 С

Предельно допустимая разность температур металла в

поперечном сечении (по ширине) фланцев горизонтального

разъема цилиндров без включения системы обогрева

фланцев и шпилек ЦВД..………………………………….…………………………………………80 0 С

разъема ЦВД при включенном обогреве фланцев и шпилек …………………………………..…50 0 С

в поперечном сечении (по ширине) фланцев горизонтального

разъема ЦВД при включенном обогреве фланцев и шпилек ……………………………….……-25 0 С

Предельно допустимая разность температур металла между верхним

и нижним (правым и левым) фланцами ЦВД при включенном

обогреве фланцев и шпилек ………………………………………………….…………………....10 0 С

Предельно допустимая положительная разность температур металла

между фланцами и шпильками ЦВД при включенном обогреве

фланцев и шпилек …………………………………………………………….…………………….20 0 С

Предельно допустимая отрицательная разность температур металла

между фланцами и шпильками ЦВД при включенном обогреве фланцев и шпилек ………………………………………………………………………………………..…..-20 0 С

Предельно допустимая разность температур металла по толщине

стенки цилиндра, измеренная в зоне регулирующей ступени ЦВД ….………………………….35 0 С

подшипников и упорного подшипника турбины …………………………………….……...…..90 0 C

Максимально допустимая температура вкладышей опорных

подшипников генератора …………………………………………………….…………..………..80 0 C

1.1.11. По механическому состоянию турбины:

Предельно допустимое укорочение РВД относительно ЦВД….……………………………….-2 мм

Предельно допустимое удлинение РВД относительно ЦВД ….……………………………….+3 мм

Предельно допустимое укорочение РНД относительно ЦНД ….……………………..………-2,5 мм

Предельно допустимое удлинение РНД относительно ЦНД …….……………………..…….+3 мм

Предельно допустимое искривление ротора турбины …………….…………………………..0,2 мм

Предельно допустимое максимальное значение искривления

вала турбоагрегата при прохождении критических частот вращения ………………………..0,25 мм

сторону генератора ……………………………………………………….…………………..…1,2 мм

Предельно допустимый осевой сдвиг ротора турбины в

сторону блока регулирования …………………………………………….…………………….1,7 мм

1.1.12. По вибрационному состоянию турбоагрегата:

Максимально допустимая виброскорость подшипников турбоагрегата

на всех режимах (кроме критических частот вращения) ……………….…………………….4,5 мм/сек

при увеличении виброскорости подшипников более 4,5 мм/сек ……………………………30 суток

Максимально допустимая продолжительность работы турбоагрегата

при увеличении виброскорости подшипников более 7,1 мм/сек ……….……………………7 cуток

Аварийное повышение виброскорости любой из опор ротора ………….……………………11,2 мм/сек

Аварийное внезапное одновременное повышение виброскорости двух

опор одного ротора, или смежных опор, или двух компонентов вибрации

одной опоры от любого начального значения………………………………………………... на 1мм и более

1.1.13. По расходу, давлению и температуре циркуляционной воды:

Суммарный расход охлаждающей воды на турбоагрегат ………….………………………….8300 м 3 /час

Максимальный расход охлаждающей воды через конденсатор ….…………………………..8000 м 3 /час

Минимальный расход охлаждающей воды через конденсатор ……………….……………..2000 м 3 /час

Максимальный расход воды через встроенный пучок конденсатора ……….………………1500 м 3 /час

Минимальный расход воды через встроенный пучок конденсатора ………………………..300 м 3 /час

Максимальная температура охлаждающей воды на входе в конденсатор….…………………………………………………………………………………..33 0 С

Минимальная температура циркуляционной воды на входе в

конденсатор в период минусовых температур наружного воздуха ………...……………….8 0 С

Минимальное давление циркуляционной воды при котором работает АВР циркуляционных насосов ЦН-1,2,3,4…………………………………………………………..0,4 кгс/см 2

Максимальное давление циркуляционной воды в трубной системе

левой и правой половин конденсатора ……………………………………….……….……….2,5 кгс/см 2

Максимальное абсолютное давление воды в трубной системе

встроенного пучка конденсатора.……………………………………………………………….8 кгс/см 2

Номинальное гидравлическое сопротивление конденсатора при

чистых трубках и расходе циркуляционной воды 6500 м 3 /час………………………..……...3,8 м. вод. ст.

Максимальная разность температур циркуляционной воды между

входом ее в конденсатор и выходом из него …………………………………………………..10 0 С

1.1.14. По расходу, давлению и температуре пара и химобессоленной воды в конденсатор:

Максимальный расход химобессоленной воды в конденсатор ………………..……………..100 т/час.

Максимальный расход пара в конденсатор на всех режимах

эксплуатации …………………………………………………………………………….………220 т/час.

Минимальный расход пара через ЧНД турбины в конденсатор

при закрытой поворотной диафрагме …………………………………………………….……10 т/час.

Максимально допустимая температура выхлопной части ЦНД ……………………….……..70 0 С

Максимально допустимая температура химобессоленной воды,

поступающей в конденсатор …………………………………………………………….………100 0 С

Абсолютное давление пара в выхлопной части ЦНД при котором

срабатывают атмосферные клапана-диафрагмы ………………………………………..……..1,2 кгс/см 2

1.1.15. По абсолютному давлению (вакууму) в конденсаторе турбины:

Номинальное абсолютное давление в конденсаторе……………………………….………………0,035 кгс/см 2

Допустимое снижение вакуума в конденсаторе при котором срабатывает предупредительная сигнализация………………. ………………………..………...-0,91 кгс/см 2

Аварийное снижение вакуума в конденсаторе при котором

Турбоагрегат отключается защитой…………… ………………………………………………....-0,75 кгс/см 2

сбросом в него горячих потоков ….…………………………………………………………….….-0,55 кгс/см 2

Допустимый вакуум в конденсаторе при пуске турбины перед

толчком вала турбоагрегата …………………………………………………………………..……-0,75 кгс/см 2

Допустимый вакуум в конденсаторе при пуске турбины в конце

выдержки вращения ее ротора с частотой 1000 об/мин …………….……………………..…….-0,95 кгс/см 2

1.1.16. По давлению и температуре пара уплотнений турбины:

Минимальное абсолютное давление пара на уплотнения турбины

за регулятором давления …………………………………………………………………...……….1,1 кгс/см 2

Максимальное абсолютное давление пара на уплотнения турбины

за регулятором давления …………………………………………………………………………….1,2кгс/см 2

Минимальное абсолютное давление пара за уплотнениями турбины

до регулятора поддержания давления …….…………………………………………………….….1,3кгс/см 2

Максимальное абсолютное давление пара за уплотнениями турбины…

до регулятора поддержания давления …………………………………………………………..….1,5 кгс/см 2

Минимальное абсолютное давление пара во вторых камерах уплотнений ……………………...1,03 кгс/см 2

Максимальное абсолютное давление пара во вторых камерах уплотнений ……………………..1,05 кгс/см 2

Номинальная температура пара на уплотнения …………………………………………………….150 0 C

1.1.17. По давлению и температуре масла на смазку подшипников турбоагрегата:

Номинальное избыточное давление масла в системе смазки подшипников

турбины до маслоохладит.……………………………………………………………………..……..3 кгс/см 2

Номинальное избыточное давление масла в системе смазки

подшипников на уровне оси вала турбоагрегата…………...……………………………………….1кгс/см 2

на уровне оси вала турбоагрегата при котором срабатывает

предупредительная сигнализация …………………………………………………………..………..0,8 кгс/см 2

Избыточное давление масла в системе смазки подшипников

на уровне оси вала турбоагрегата при котором включается РМН ………………………………….0,7 кгс/см 2

Избыточное давление масла в системе смазки подшипников

на уровне оси вала турбоагрегата при котором включается АМН ……………………………..….0,6 кгс/см 2

Избыточное давление масла в системе смазки подшипников на уровне

оси вала турбоагрегата при котором ВПУ отключается защитой …… ………………………..…0,3 кгс/см 2

Аварийное избыточное давление масла в системе смазки подшипников

на уровне оси вала турбины при котором турбоагрегат отключается защитой …………………………………………………………………………………….…………..0,3 кгс/см 2

Номинальная температура масла на смазку подшипников турбоагрегата ………………………..40 0 С

Максимально допустимая температура масла на смазку подшипников

турбоагрегата ……………………………………………………………………………………….…45 0 С

Максимально допустимая температура масла на сливе из

подшипников турбоагрегата ………………………………………………………………………....65 0 С

Аварийная температура масла на сливе из подшипников

турбоагрегата ………………………………………………………………………………….………75 0 C

1.1.18. По давлению масла в системе регулирования турбины:

Избыточное давление масла в системе регулирования турбины, создаваемое ПМН…………………………………………………………………..……………..…18 кгс/см 2

Избыточное давление масла в системе регулирования турбины, создаваемое ГМН……………………………………………………………………………..……..20 кгс/см 2

Избыточное давление масла в системе регулирования турбины

При котором идет запрет на закрытие задвижки на напоре и на отключение ПМН….……….17,5 кгс/см 2

1.1.19. По давлению, уровню, расходу и температуре масла в системе уплотнения вала турбогенератора:

Избыточное давление масла в системе уплотнения вала турбогенератора при котором по АВР в работу включается резервный МНУВ переменного тока………………………………………………………………8 кгс/см 2

Избыточное давление масла в системе уплотнения вала турбогенератора при котором по АВР в работу включается

резервный МНУВ постоянного тока………………………………………………………………..7 кгс/см 2

Допустимый минимальный перепад между давлением масла на уплотнениях вала и давлением водорода в корпусе турбогенератора…………………………..0,4 кгс/см 2

Допустимый максимальный перепад между давлением масла на уплотнениях вала и давлением водорода в корпусе турбогенератора…………………….….....0,8 кгс/см 2

Максимальный перепад между давлением масла на входе и давлением

масла на выходе МФГ при котором необходимо перейти на резервный масляный фильтр генератора………………………………………………………………………….1кгс/см 2

Номинальная температура масла на выходе с МОГ………………………………………………..40 0 С

Допустимое повышение температуры масла на выходе с МОГ……………………….…….…….45 0 С

1.1.20. По температуре и расходу питательной воды через группу ПВД турбины:

Номинальная температура питательной воды на входе в группу ПВД ….……………………….164 0 С

Максимальная температура питательной воды на выходе с группы ПВД при номинальной мощности турбоагрегата…………………………………………………………..…249 0 С

Максимальный расход питательной воды через трубную систему ПВД …………………...…...550 т/час

1.2. Технические данные турбины.

Номинальная мощность турбины 80 МВт
Максимальная мощность турбины при полностью включенной регенерации при определенных сочетаниях производственного и теплофикационного отборов, определяемых диаграммой режимов 100 МВт
Абсолютное давление свежего пара автоматическими стопорным клапаном 130 кгс/см²
Температура пара перед стопорным клапаном 555 °С
Абсолютное давление в конденсаторе 0,035 кгс/см²
Максимальный расход пара через турбину при работе со всеми отборами и с любым их сочетанием 470 т/ч
Максимальный пропуск пара в конденсатор 220 т/ч
Расход охлаждающей воды в конденсатор при расчетной температуре на входе в конденсатор 20 °С 8000 м³/ч
Абсолютное давление пара регулируемого производственного отбора 13±3 кгс/см²
Абсолютное давление пара регулируемого верхнего теплофикационного отбора 0,5 – 2,5 кгс/см²
Абсолютное давление пара регулируемого нижнего теплофикационного отбора при одноступенчатой схеме подогрева сетевой воды 0,3 – 1 кгс/см²
Температура питательной воды после ПВД 249 °С
Удельный расход пара (гарантированный ПОТ ЛМЗ) 5,6 кг/кВтч

Примечание: Пуск турбоагрегата, остановленного из-за повышения (изменения) вибрации, разрешается только после детального анализа причин возникновения вибрации и при наличии разрешения главного инженера электростанции, сделанного им собственноручно в оперативном журнале начальника смены станции.

1.6 Турбина должна быть немедленно остановлена в следующих случаях:

· Увеличение частоты вращения выше 3360 об/мин.

· Обнаружении разрыва или сквозной трещины на неотключаемых участках маслопроводов, пароводяного тракта, узлах парораспределения.

· Появления гидравлических ударов в паропроводах свежего пара или в турбине.

· Аварийного снижения вакуума до -0,75 кгс/см² или срабатывании атмосферных клапанов.

· Резкого снижения температуры свежего п

  • Tutorial

Предисловие к первой части

Моделирование паровых турбин — повседневная задача сотен людей в нашей стране. Вместо слова модель принято говорить расходная характеристика . Расходные характеристики паровых турбин используют при решении таких задач, как вычисление удельного расхода условного топлива на электроэнергию и тепло, производимые ТЭЦ; оптимизация работы ТЭЦ; планирование и ведение режимов ТЭЦ.


Мною разработана новая расходная характеристика паровой турбины — линеаризованная расходная характеристика паровой турбины. Разработанная расходная характеристика удобна и эффективна в решении указанных задач. Однако на текущий момент она описана лишь в двух научных работах:

  1. Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России ;
  2. Вычислительные методы определения удельных расходов условного топлива ТЭЦ на отпущенную электрическую и тепловую энергию в режиме комбинированной выработки .

И сейчас в своем блоге мне бы хотелось:

  • во-первых, простым и доступным языком ответить на основные вопросы о новой расходной характеристике (см. Линеаризованная расходная характеристика паровой турбины. Часть 1. Основные вопросы);
  • во-вторых, предоставить пример построения новой расходной характеристики, который поможет разобраться и в методе построения, и в свойствах характеристики (см. ниже);
  • в-третьих, опровергнуть два известных утверждения относительно режимов работы паровой турбины (см. Линеаризованная расходная характеристика паровой турбины. Часть 3. Развенчиваем мифы о работе паровой турбины).

1. Исходные данные

Исходными данными для построения линеаризованной расходной характеристики могут быть

  1. фактические значения мощностей Q 0 , N, Q п, Q т измеренные в процессе функционирования паровой турбины,
  2. номограммы q т брутто из нормативно-технической документации.
Конечно, фактические мгновенные значения Q 0 , N, Q п, Q т являются идеальными исходными данными. Сбор таких данных трудоемок.

В тех случаях, когда фактические значения Q 0 , N, Q п, Q т недоступны, можно обработать номограммы q т брутто. Они, в свою очередь, были получены на основании измерений. Подробнее об испытаниях турбин читайте в Горнштейн В.М. и др. Методы оптимизации режимов энергосистем .

2. Алгоритм построения линеаризованной расходной характеристики

Алгоритм построения состоит из трех шагов.

  1. Перевод номограмм или результатов измерений в табличный вид.
  2. Линеаризация расходной характеристики паровой турбины.
  3. Определение границ регулировочного диапазона работы паровой турбины.

При работе с номограммами q т брутто первый шаг осуществляется быстро. Такую работу называют оцифровкой (digitizing). Оцифровка 9 номограмм для текущего примера заняла у меня около 40 минут.


Второй и третий шаг требуют применения математических пакетов. Я люблю и много лет использую MATLAB. Мой пример построения линеаризованной расходной характеристики выполнен именно в нем. Пример можно скачать по ссылке , запустить и самостоятельно разобраться в методе построения линеаризованной расходной характеристики.


Расходная характеристика для рассматриваемой турбины строилась для следующих фиксированных значений параметров режима:

  • одноступенчатый режим работы,
  • давление пара среднего давления = 13 кгс/см2,
  • давление пара низкого давления = 1 кгс/см2.

1) Номограммы удельного расхода q т брутто на выработку электроэнергии (отмеченные красные точки оцифрованы — перенесены в таблицу):

  • PT80_qt_Qm_eq_0_digit.png,
  • PT80_qt_Qm_eq_100_digit.png,
  • PT80_qt_Qm_eq_120_digit.png,
  • PT80_qt_Qm_eq_140_digit.png,
  • PT80_qt_Qm_eq_150_digit.png,
  • PT80_qt_Qm_eq_20_digit.png,
  • PT80_qt_Qm_eq_40_digit.png,
  • PT80_qt_Qm_eq_60_digit.png,
  • PT80_qt_Qm_eq_80_digit.png.

2) Результат оцифровки (каждому файлу csv соответствует файл png):

  • PT-80_Qm_eq_0.csv,
  • PT-80_Qm_eq_100.csv,
  • PT-80_Qm_eq_120.csv,
  • PT-80_Qm_eq_140.csv,
  • PT-80_Qm_eq_150.csv,
  • PT-80_Qm_eq_20.csv,
  • PT-80_Qm_eq_40.csv,
  • PT-80_Qm_eq_60.csv,
  • PT-80_Qm_eq_80.csv.

3) Скрипт MATLAB с расчетами и построением графиков:

  • PT_80_linear_characteristic_curve.m

4) Результат оцифровки номограмм и результат построения линеаризованной расходной характеристики в табличном виде:

  • PT_80_linear_characteristic_curve.xlsx.

Шаг 1. Перевод номограмм или результатов измерений в табличный вид

1. Обработка исходных данных

Исходными данными для нашего примера являются номограммы q т брутто.


Для перевода в цифровой вид множества номограмм нужен специальный инструмент. Я многократно использовала web-приложение для этих целей. Приложение просто, удобно, однако не имеет достаточной гибкости для автоматизации процесса. Часть работы приходится делать вручную.


На данном шаге важно оцифровать крайние точки номограмм, которые задают границы регулировочного диапазона работы паровой турбины .


Работа состояла в том, чтобы в каждом файле png при помощи приложения отметить точки расходной характеристики, скачать полученный csv и собрать все данные в одной таблице. Результат оцифровки можно найти в файле PT-80-linear-characteristic-curve.xlsx, лист «PT-80», таблица «Исходные данные».

2. Приведение единиц измерения к единицам мощности

$$display$$\begin{equation} Q_0 = \frac {q_T \cdot N} {1000} + Q_П + Q_Т \qquad (1) \end{equation}$$display$$


и приводим все исходные величины к МВт. Расчеты реализованы средствами MS Excel.

Полученная таблица «Исходные данные (ед. мощности)» является результатом первого шага алгоритма.

Шаг 2. Линеаризация расходной характеристики паровой турбины

1. Проверка работы MATLAB

На данном шаге требуется установить и открыть MATLAB версии не ниже 7.3 (это старая версия, текущая 8.0). В MATLAB открыть файл PT_80_linear_characteristic_curve.m, запустить его и убедиться в работоспособности. Все работает корректно, если по итогам запуска скрипта в командной строке вы увидели следующее сообщение:


Значения считаны из файла PT_80_linear_characteristic_curve.xlsx за 1 сек Коэффициенты: a(N) = 2.317, a(Qп) = 0.621, a(Qт) = 0.255, a0 = 33.874 Средняя ошибка = 0.006, (0.57%) Число граничных точек регулировочного диапазона = 37

Если у вас возникли ошибки, то разберитесь самостоятельно, как их исправить.

2. Вычисления

Все вычисления реализованы в файле PT_80_linear_characteristic_curve.m. Рассмотрим его по частям.


1) Укажем название исходного файла, лист, диапазон ячеек, содержащий полученную на предыдущем шаге таблицу «Исходные данные (ед. мощности)».


XLSFileName = "PT_80_linear_characteristic_curve.xlsx"; XLSSheetName = "PT-80"; XLSRange = "F3:I334";

2) Считаем исходные данные в MATLAB.


sourceData = xlsread(XLSFileName, XLSSheetName, XLSRange); N = sourceData(:,1); Qm = sourceData(:,2); Ql = sourceData(:,3); Q0 = sourceData(:,4); fprintf("Значения считаны из файла %s за %1.0f сек\n", XLSFileName, toc);

Используем переменную Qm для расхода пара среднего давления Q п, индекс m от middle — средний; аналогично используем переменную Ql для расхода пара низкого давления Q n , индекс l от low — низкий.


3) Определим коэффициенты α i .


Вспомним общую формулу расходной характеристики

$$display$$\begin{equation} Q_0 = f(N, Q_П, Q_Т) \qquad (2) \end{equation}$$display$$

и укажем независимые (x_digit) и зависимые (y_digit) переменные.


x_digit = ; % электроэнергия N, промышленный пар Qп, теплофикационный пар Qт, единичный вектор y_digit = Q0; % расход острого пара Q0

Если вам непонятно, зачем в матрице x_digit единичный вектор (последний столбец), то читайте материалы по линейной регрессии. На тему регрессионного анализа рекомендую книгу Draper N., Smith H. Applied regression analysis . New York: Wiley, In press, 1981. 693 p. (есть на русском языке).


Уравнение линеаризованной расходной характеристики паровой турбины


$$display$$\begin{equation} Q_0 = \alpha_N \cdot N + \alpha_П \cdot Q_П + \alpha_Т \cdot Q_Т + \alpha_0 \qquad (3) \end{equation}$$display$$

является моделью множественной линейной регрессии. Коэффициенты α i определим при помощи «большого блага цивилизации» — метода наименьших квадратов. Отдельно отмечу, что метод наименьших квадратов разработан Гауссом в 1795 году.


В MATLAB это делается одной строчкой.


A = regress(y_digit, x_digit); fprintf("Коэффициенты: a(N) = %4.3f, a(Qп) = %4.3f, a(Qт) = %4.3f, a0 = %4.3f\n",... A);

Переменная A содержит искомые коэффициенты (см. сообщение в командной строке MATLAB).


Таким образом, полученная линеаризованная расходная характеристика паровой турбины ПТ-80 имеет вид


$$display$$\begin{equation} Q_0 = 2.317 \cdot N + 0.621 \cdot Q_П + 0.255 \cdot Q_Т + 33.874 \qquad (4) \end{equation}$$display$$


4) Оценим ошибку линеаризации полученной расходной характеристики.


y_model = x_digit * A; err = abs(y_model - y_digit) ./ y_digit; fprintf("Средняя ошибка = %1.3f, (%4.2f%%)\n\n", mean(err), mean(err)*100);

Ошибка линеаризации равна 0,57% (см. сообщение в командной строке MATLAB).


Для оценки удобства использования линеаризованной расходной характеристики паровой турбины решим задачу вычисления расхода пара высокого давления Q 0 при известных значениях нагрузки N, Q п, Q т.


Пусть N = 82.3 МВт, Q п = 55.5 МВт, Q т = 62.4 МВт, тогда


$$display$$\begin{equation} Q_0 = 2.317 \cdot 82,3 + 0.621 \cdot 55,5 + 0.255 \cdot 62,4 + 33.874 = 274,9 \qquad (5) \end{equation}$$display$$


Напомню, что средняя ошибка вычислений составляет 0,57%.


Вернемся к вопросу, чем линеаризованная расходная характеристика паровой турбины принципиально удобнее номограмм удельного расхода q т брутто на выработку электроэнергии? Чтобы понять принципиальную разницу на практике, решите две задачи.

  1. Вычислите величину Q 0 с указанной точностью с использованием номограмм и ваших глаз.
  2. Автоматизируйте процесс расчета Q 0 с использованием номограмм.

Очевидно, что в первой задаче определение значений q т брутто на глаз чревато грубыми ошибками.


Вторая задача громоздка для автоматизации. Поскольку значения q т брутто нелинейны , то для такой автоматизации число оцифрованных точек в десятки раз больше, чем в текущем примере. Одной оцифровки недостаточно, также необходимо реализовать алгоритм интерполяции (нахождения значений между точками) нелинейных значений брутто.

Шаг 3. Определение границ регулировочного диапазона работы паровой турбины

1. Вычисления

Для вычисления регулировочного диапазона воспользуемся другим «благом цивилизации» — методом выпуклой оболочки, convex hull.


В MATLAB это делается следующим образом.


indexCH = convhull(N, Qm, Ql, "simplify", true); index = unique(indexCH); regRange = ; regRangeQ0 = * A; fprintf("Число граничных точек регулировочного диапазона = %d\n\n", size(index,1));

Метод convhull() определяет граничные точки регулировочного диапазона , заданного значениями переменных N, Qm, Ql. Переменная indexCH содержит вершины треугольников, построенных при помощи триангуляции Делоне. Переменная regRange содержит граничные точки регулировочного диапазона; переменная regRangeQ0 — значения расхода пара высокого давления для граничных точек регулировочного диапазона.


Результат вычислений можно найти в файле PT_80_linear_characteristic_curve.xlsx, лист «PT-80-result», таблица «Границы регулировочного диапазона».


Линеаризованная расходная характеристика построена. Она представляет собой формулу и 37 точек, задающих границы (оболочку) регулировочного диапазона в соответствующей таблице.

2. Проверка

При автоматизации процессов расчета Q 0 необходимо проверять, находится ли некоторая точка со значениями N, Q п, Q т внутри регулировочного диапазона или за его пределами (режим технически не реализуем). В MATLAB это можно делать следующим образом.


Задаем значения N, Q п, Q т, которые мы хотим проверить.


n = 75; qm = 120; ql = 50;

Проверяем.


in1 = inpolygon(n, qm, regRange(:,1),regRange(:,2)); in2 = inpolygon(qm, ql, regRange(:,2),regRange(:,3)); in = in1 && in2; if in fprintf("Точка N = %3.2f МВт, Qп = %3.2f МВт, Qт = %3.2f МВт находится внутри регулировочного диапазона\n", n, qm, ql); else fprintf("Точка N = %3.2f МВт, Qп = %3.2f МВт, Qт = %3.2f МВт находится снаружи регулировочного диапазона (технически недостижима)\n", n, qm, ql); end

Проверка осуществляется в два шага:

  • переменная in1 показывает, попали ли значения N, Q п внутрь проекции оболочки на оси N, Q п;
  • аналогично переменная in2 показывает, попали ли значения Q п, Q т внутрь проекции оболочки на оси Q п, Q т.

Если обе переменные равны 1 (true), то искомая точка находится внутри оболочки, задающей регулировочный диапазон работы паровой турбины.

Иллюстрация полученной линеаризованной расходной характеристики паровой турбины

Наиболее «щедрые блага цивилизации» нам достались в части иллюстрации результатов расчетов.


Предварительно нужно сказать, что пространство, в котором мы строим графики, т. е. пространство с осями x – N, y – Q т, z – Q 0 , w – Q п, называем режимным пространством (см. Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России

). Каждая точка этого пространства определяет некоторый режим работы паровой турбины. Режим может быть

  • технически реализуемым, если точка находится внутри оболочки, задающей регулировочный диапазон,
  • технически не реализуемым, если точка находится за пределами этой оболочки.

Если говорить о конденсационном режиме работы паровой турбины (Q п = 0, Q т = 0), то линеаризованная расходная характеристика представляет собой отрезок прямой . Если говорить о турбине Т-типа, то линеаризованная расходная характеристика представляет собой плоский многоугольник в трехмерном режимном пространстве с осями x – N, y – Q т, z – Q 0 , который легко визуализировать. Для турбины ПТ-типа визуализация наиболее сложная, поскольку линеаризованная расходная характеристика такой турбины представляет плоский многоугольник в четырехмерном пространстве (пояснения и примеры см. в Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России, раздел Линеаризация расходной характеристики турбины ).

1. Иллюстрация полученной линеаризованной расходной характеристики паровой турбины

Построим значения таблицы «Исходные данные (ед. мощности)» в режимном пространстве.



Рис. 3. Исходные точки расходной характеристики в режимном пространстве с осями x – N, y – Q т, z – Q 0


Поскольку построить зависимость в четырехмерном пространстве мы не можем, до такого блага цивилизации еще не дошли, оперируем значениями Q п следующим образом: исключаем их (рис. 3), зафиксируем (рис. 4) (см. код построения графиков в MATLAB).


Зафиксируем значение Q п = 40 МВт и построим исходные точки и линеаризованную расходную характеристику.




Рис. 4. Исходные точки расходной характеристики (синие точки), линеаризованная расходная характеристика (зеленый плоский многоугольник)


Вернемся к полученной нами формуле линеаризованной расходной характеристики (4). Если зафиксировать Q п = 40 МВт МВт, то формула будет иметь вид


$$display$$\begin{equation} Q_0 = 2.317 \cdot N + 0.255 \cdot Q_Т + 58.714 \qquad (6) \end{equation}$$display$$


Данная модель задает плоский многоугольник в трехмерном пространстве с осями x – N, y – Q т, z – Q 0 по аналогии с турбиной Т-типа (его мы и видим на рис. 4).


Много лет назад, когда разрабатывали номограммы q т брутто, на этапе анализа исходных данных совершили принципиальную ошибку. Вместо применения метода наименьших квадратов и построения линеаризованной расходной характеристики паровой турбины по неведомой причине сделали примитивный расчет:


$$display$$\begin{equation} Q_0(N) = Q_э = Q_0 - Q_Т - Q_П \qquad (7) \end{equation}$$display$$


Вычли из расхода пара высокого давления Q 0 расходы паров Q т, Q п и отнесли полученную разницу Q 0 (N) = Q э на выработку электроэнергии. Полученную величину Q 0 (N) = Q э поделили на N и перевели в ккал/кВт·ч, получив удельный расход q т брутто. Данный расчет не соответствует законам термодинамики.


Дорогие читатели, может, именно вы знаете неведомую причину? Поделитесь ею!

2. Иллюстрация регулировочного диапазона паровой турбины

Посмотрим оболочку регулировочного диапазона в режимном пространстве. Исходные точки для его построения представлены на рис. 5. Это те же самые точки, которые мы видим на рис. 3, однако теперь исключен параметр Q 0 .




Рис. 5. Исходные точки расходной характеристики в режимном пространстве с осями x – N, y – Q п, z – Q т


Множество точек на рис. 5 является выпуклым. Применив функцию convexhull(), мы определили точки, которые задают внешнюю оболочку этого множества.


Триангуляция Делоне (набор связанных треугольников) позволяет нам построить оболочку регулировочного диапазона. Вершины треугольников являются граничными значениями регулировочного диапазона рассматриваемой нами паровой турбины ПТ-80.




Рис. 6. Оболочка регулировочного диапазона, представленная множеством треугольников


Когда мы делали проверку некоторой точки на предмет попадания внутрь регулировочного диапазона, то мы проверяли, лежит ли эта точка внутри или снаружи полученной оболочки.


Все представленные выше графики построены средствами MATLAB (см. PT_80_linear_characteristic_curve.m).

Перспективные задачи, связанные с анализом работы паровой турбины при помощи линеаризованной расходной характеристики

Если вы делаете диплом или диссертацию, то могу предложить вам несколько задач, научную новизну которых вы легко сможете доказать всему миру. Кроме того, вы сделаете отличную и полезную работу.

Задача 1

Покажите, как изменится плоский многоугольник при изменении давления пара низкого давления Q т.

Задача 2

Покажите, как изменится плоский многоугольник при изменении давления в конденсаторе.

Задача 3

Проверьте, можно ли представить коэффициенты линеаризованной расходной характеристики в виде функций дополнительных параметров режима, а именно:


$$display$$\begin{equation} \alpha_N = f(p_{0},...); \\ \alpha_П = f(p_{П},...); \\ \alpha_Т = f(p_{Т},...); \\ \alpha_0 = f(p_{2},...). \end{equation}$$display$$

Здесь p 0 — давление пара высокого давления, p п — давление пара среднего давления, p т — давление пара низкого давления, p 2 — давление отработанного пара в конденсаторе, все единицы измерения кгс/см2.


Обоснуйте результат.

Ссылки

Чучуева И.А., Инкина Н.Е. Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России // Наука и образование: научное издание МГТУ им. Н.Э. Баумана. 2015. № 8. С. 195-238.

  • Раздел 1. Содержательная постановка задачи оптимизации работы ТЭЦ в России
  • Раздел 2. Линеаризация расходной характеристики турбины
Добавить метки

Комплексная модернизация паровой турбины ПТ-80/100-130/13

Целью модернизации является увеличение электрической и теплофикационной мощности турбины с повышением экономичности турбоустановки. Модернизация в объеме основной опции заключается в установке сотовых надбандажных уплотнений ЦВД и замене проточной части среднего давления с изготовлением нового ротора НД с целью увеличения пропускной способности ЧСД до 383 т/ч. При этом сохраняется диапазон регулирования давления в производственном отборе, максимальный расход пара в конденсатор не изменяется.
Заменяемые узлы при модернизации турбоагрегата в объёме основной опции:

  • Установка сотовых надбандажных уплотнений 1-17 ступеней ЦВД;
  • Направляющий аппарат ЦСНД;
  • Седла РК ЧСД большего пропускного сечения с доработкой паровых коробок верхней половины корпуса ЧСД под установку новых крышек;
  • Регулирующие клапаны СД и кулачково-распределительное устройство;
  • Диафрагмы 19-27 ступеней ЦСНД, укомплектованные надбандажными сотовыми уплотнениями и уплотнительными кольцами с витыми пружинами;
  • Ротор СНД с установленными новыми рабочими лопатками 18-27 ступеней ЦСНД с цельнофрезерованными бандажами;
  • Обоймы диафрагм №1, 2, 3;
  • Обойма передних концевых уплотнений и уплотнительные кольца с витыми пружинами;
  • Насадные диски 28, 29, 30 ступеней сохраняются в соответствии с существующей конструкцией, что позволяет сократить затраты на проведение модернизации (при условии использования старых насадных дисков).
Кроме того, в объёме основной опции предусматривается установка в козырьки диафрагм сотовых надбандажных уплотнений 1-17 ступеней ЦВД с приваркой уплотняющих усов на бандажи рабочих лопаток.

В результате модернизации по основной опции достигается следующее:

  1. Увеличение максимальной электрической мощности турбины до 110 МВт и мощности теплофикационного отбора до 168,1 Гкал/ч, за счет сокращения промышленного отбора.
  2. Обеспечение надёжной и маневренной работы турбоустановки на всех эксплуатационных режимах работы, в том числе при минимально возможных давлениях в промышленном и теплофикационном отборах.
  3. Повышение показателей экономичности турбоустановки;
  4. Обеспечение стабильности достигнутых технико-экономических показателей в течение межремонтного периода.

Эффект от модернизации в объеме основного предложения:

Режимы турбоагрегата Электрическая мощность, МВт Расход пара на теплофикацию, т/ч Расход пара на производство, т/ч

Конденсационный

Номинальный

Максимальной мощности

С максимальным
теплофикационным отбором

Увеличение КПД ЧСД

Увеличение КПД ЦВД

Дополнительные предложения (опции) по модернизации

  • Модернизация обоймы регулирующей ступени ЦВД с установкой надбандажных сотовых уплотнений
  • Установка диафрагм последних ступеней с тангенциальным навалом
  • Высокогерметичные уплотнения штоков регулирующих клапанов ЦВД

Эффект от модернизации по дополнительным опциям


п/п

Наименование

Эффект

Модернизация обоймы регулирующей ступени ЦВД с установкой надбандажных сотовых уплотнений

Увеличение мощности на 0,21-0,24 МВт
- повышение КПД ЦВД на 0,3-0,4%
- повышение надежности работы


остановах турбин

Установка диафрагм последних ступеней с тангенциальным навалом

Конденсационный режим:
- увеличение мощности на 0,76 МВт
- повышение КПД ЦСНД 2,1%

Уплотнение поворотной диафрагмы

Повышение экономичности турбоустановки при работе в режиме с полностью закрытой поворотной диафрагмой 7 Гкал/час

Замена надбандажных уплотнений ЦВД и ЦСД на сотовые

Повышение КПД цилиндров (ЦВД на 1,2-1,4%, ЦСНД на 1%);
- увеличение мощности (ЦВД на 0,6-0,9 МВт, ЦСНД на 0,2 МВт);
- улучшение надёжности работы турбоагрегатов;
- обеспечение стабильности достигнутых технико-экономических
показателей в течение межремонтного периода;
- обеспечение надёжной, без снижения экономичности работы
надбандажных уплотнений ЦВД и ЦСД на переходных режимах,
в т.ч. при аварийных остановах турбин.

Замена регулирующих клапанов ЦВД

Увеличение мощности на 0,02-0,11 МВт
- повышение КПД ЦВД на 0,12%
- повышение надежности работы

Установка сотовых концевых уплотнений ЦНД

Устранение присосов воздуха через концевые уплотнения
- повышение надежности работы турбины
- повышение экономичности турбины
- стабильность достигнутых технико-экономических показателей
в течение всего межремонтного периода
- надёжная, без снижения экономичности работа концевых
уплотнений ЦНД в переходных режимах, в т.ч. при аварийных
остановах турбин

Теплофикационная паровая турбина ПТ-80/100-130/13 производственного объеди­нения турбостроения «Ленинградский металлический завод» (НОГ ЛМЗ) с промышлен­ным и отопительными отборами пара номинальной мощностью 80 МВт, максимальной 100 МВт с начальным давлением пара 12,8 МПа предназначена для непосредственного привода электрического генератора ТВФ-120-2 с частотой вращения 50 Гц и отпуска теп­ла для нужд производства и отопления.

При заказе турбины, а также в другой документации, где ее следует обозначать «Турбина паровая 1ГГ-80/100-130/13 ТУ 108-948-80».

Турбина ПТ-80/100-130/13 соответствует требованиям ГОСТ 3618-85, ГОСТ 24278-85 и ГОСТ 26948-86.

Турбина имеет следующие регулируемые отборы пара: производственный с абсо­лютным давлением (1,275±0,29) МПа и два отопительных отбора: верхний с абсолют­ным давлением в пределах 0,049-0,245 МПа и нижний с давлением в пределах 0,029-0,098 МПа.

Регулирование давления отопительного отбора осуществляется с помощью одной регулирующей диафрагмы, установленной в камере верхнего отопительного от­бора. Регулируемое давление в отопительных отборах поддерживается: в верхнем отбо­ре — при включенных обоих отопительных отборах, в нижнем отборе — при включенном одном нижнем отопительном отборе. Сетевая вода через сетевые подогреватели нижней и верхней ступеней подогрева пропускается последовательно и в одинаковом количест­ве. Расход воды, проходящей через сетевые подогреватели, контролируется.

Номинальные значения основных параметров турбины ПТ-80/100-130/13

Параметр ПТ-8О/100-130/13
1. Мощность, МВт
номинальная 80
максимальная 100
2. Начальные параметры пара:
давление, МПа 12.8
температура. °С 555
284 (78.88)
4. Расход отбираемого пара на производств. нужды, т/ч
номинальный 185
максимальный 300
5. Давление производственного отбора, МПа 1.28
6. Максимальный расход свежего пара, т/ч 470
7. Пределы изменения давления пара в регулируемых отопительных отборах пара, МПа
в верхнем 0.049-0.245
в нижнем 0.029-0.098
8. Температура воды, °С
питательной 249
охлаждающей 20
9. Расход охлаждающей воды, т/ч 8000
10. Давление пара в конденсаторе, кПа 2.84

При номинальных параметрах свежею пара, расходе охлаждающей воды 8000 м3/ч, температуре охлаждающей воды 20 °С, полностью включенной регенерации, количестве конденсата, подогреваемого в ПВД, равном 100% расхода пара через турби­ну, при работе турбоустановки с деаэратором 0,59 МПа, со ступенчатым подогревом се­тевой воды, при полном использовании пропускной способности турбины и минималь­ном пропуске пара в конденсатор могут быть взяты следующие величины отборов:

— номинальные величины регулируемых отборов при мощности 80 МВт;

— производственный отбор — 185 т/ч при абсолютном давлении 1,275 МПа;

— суммарный отопительный отбор — 285 ГДж/ч (132 т/ч) при абсолютных давлениях: в верхнем отборе — 0,088 МПа и в нижнем отборе — 0,034 МПа;

— максимальная величина производственного отбора при абсолютном давлении в камере отбора 1,275 МПа составляет 300 т/ч. При этой величине производственного от­бора и отсутствии отопительных отборов мощность турбины составляет -70 МВт. При номинальной мощности 80 МВт и отсутствии отопительных отборов максимальный про­изводственный отбор составит -250 т/ч;

— максимальная суммарная величина отопительных отборов равна 420 ГДж/ч (200 т/ч); при этой величине отопительных отборов и отсутствии производственного от­бора мощность турбины составляет около 75 МВт; при номинальной мощности 80 МВт и отсутствии производственного отбора максимальные отопительные отборы составят око­ло 250 ГДж/ч (-120 т/ч).

— максимальная мощность турбины при выключенных производственном и отопи­тельных отборах, при расходе охлаждающей воды 8000 м /ч с температурой 20 °С, пол­ностью включенной регенерации составит 80 МВт. Максимальная мощность турбины 100 МВт. получаемая при определенных сочетаниях производственного и отопительного отборов, зависит от величины отборов и определяется диафрагмой режимов.

Предусматривается возможность работы турбоустановки с пропуском подпиточной и сетевой воды через встроенный пучок

При охлаждении конденсатора сетевой водой турбина может работать по теплово­му графику. Максимальная тепловая мощность встроенного пучка составляет -130 ГДж/ч при поддержании температуры в выхлопной части не выше 80 °С.

Допускается длительная работа турбины с номинальной мощностью при следую­щих отклонениях основных параметров от номинальных:

  • при одновременном изменении в любых сочетаниях начальных параметров свеже­го пара — давления от 12,25 до 13,23 МПа и температуры от 545 до 560 °С; при этом тем­пература охлаждающей воды должна быть не выше 20 °С;
  • при повышении температуры охлаждающей воды при входе в конденсатор до 33 °С и расходе охлаждающей воды 8000 м3/ч, если начальные параметры свежего пара при этом не ниже номинальных;
  • при одновременном уменьшении величин производственного и отопительных от­боров пара до нуля.
  • при повышении давления свежего пара до 13,72 МПа и температуры до 565 °С до­пускается работа турбины в течение не более получаса, причем общая продолжитель­ность работы турбины при этих параметрах не должна превышать 200 ч/год.

Для данной турбинной установки ПТ-80/100-130/13 используеться подогреватель высокого давления №7 (ПВД-475-230-50-1). ПВД-7 работает при параметрах пара перед входом в подогреватель: давлении 4,41 МПа, температуре 420 °С и расходом пара 7,22 кг/с. Параметры питательной воды при этом: давление 15,93МПа, температура 233 °С и расход 130 кг/с.

Введение

Для крупных заводов всех отраслей промышленности, имеющих большое теплопотребление, оптимальной является система энергоснабжения от районной или промышленной ТЭЦ.

Процесс производства электроэнергии на ТЭЦ характеризуется повышенной тепловой экономичностью и более высокими энергетическими показателями по сравнению с конденсационными электростанциями. Это объясняется тем, что отработавшее тепло турбины, отведенное в холодный источник (приемника тепла у внешнего потребителя), используется в нем.

В работе произведен расчет принципиальной тепловой схемы электростанции на базе производственной теплофикационной турбины ПТ-80/100-130/13, работающей на расчетном режиме при наружной температуре воздуха.

Задачей расчета тепловой схемы является определение параметров, расходов и направлений потоков рабочего тела в агрегатах и узлах, а также общего расхода пара, электрической мощности и показателей тепловой экономичности станции.

Описание принципиальной тепловой схемы турбоустановки ПТ-80/100-130/13

Энергоблок электрической мощностью 80 МВт состоит из барабанного котла высокого давления Е-320/140, турбины ПТ-80/100-130/13, генератора и вспомогательного оборудования.

Энергоблок имеет семь отборов. В турбоустановке можно осуществлять двухступенчатый подогрев сетевой воды. Имеется основной и пиковый бойлера, а также ПВК, который включается если бойлера не могут обеспечить требуемого нагрева сетевой воды.

Свежий пар из котла с давлением 12,8 МПа и температурой 555 0 С поступает в ЦВД турбины и, отработав, направляется в ЧСД турбины, а затем в ЧНД. Отработав пар поступает из ЧНД в конденсатор.

В энергоблоке для регенерации предусмотрены три подогревателя высокого давления (ПВД) и четыре низкого (ПНД). Нумерация подогревателей идет с хвоста турбоагрегата. Конденсат греющего пара ПВД-7 каскадно сливается в ПВД-6, в ПВД-5 и затем в деаэратор (6 ата). Слив конденсата из ПНД4, ПНД3 и ПНД2 также осуществляется каскадно в ПНД1. Затем из ПНД1 конденсат греющего пара, направляется в СМ1(см. ПрТС2).

Основной конденсат и питательная вода подогреваются последовательно в ПЭ, СХ и ПС, в четырех подогревателях низкого давления (ПНД), в деаэраторе 0,6 МПа и в трех подогревателях высокого давления (ПВД). Отпуск пара на эти подогреватели осуществляется из трех регулируемых и четырех нерегулируемых отборов пара турбины.

На блоке для подогрева воды в теплосети имеется бойлерная установка, состоящая из нижнего(ПСГ-1) и верхнего(ПСГ-2) сетевых подогревателей, питающихся соответственно паром из 6-го и 7-го отбора, и ПВК. Конденсат из верхнего и нижнего сетевых подогревателей подается сливными насосами в смесители СМ1 между ПНД1 и ПНД2 и СМ2 между подогревателями ПНД2 и ПНД3.

Температура подогрева питательной воды лежит в пределах (235-247) 0 С и зависит о начального давления свежего пара, величины недогрева в ПВД7.

Первый отбор пара (из ЦВД) идет на нагрев питательной воды в ПВД-7, второй отбор (из ЦВД) - в ПВД-6, третий (из ЦВД) - в ПВД-5, Д6ата, на производство; четвертый (из ЧСД) - в ПНД-4, пятый (из ЧСД) - в ПНД-3, шестой (из ЧСД) - в ПНД-2, деаэратор (1,2 ата), в ПСГ2, в ПСВ; седьмой (из ЧНД) - в ПНД-1 и в ПСГ1.

Для восполнения потерь в схеме предусмотрен забор сырой воды. Сырая вода подогревается в подогревателе сырой воды (ПСВ) до температуры 35 о С, затем, пройдя химическую очистку, поступает в деаэратор 1,2 ата. Для обеспечения подогрева и деаэрации добавочной воды используется теплота пара из шестого отбора.

Пар из штоков уплотнений в количестве D шт = 0,003D 0 идет в деаэратор (6 ата). Пар из крайних камер уплотнений направляется в СХ, из средних камер уплотнения - в ПС.

Продувка котла - двухступенчатая. Пар с расширителя 1-ой ступени идет в деаэратор(6 ата), с расширителя 2-ой ступени в деаэратор(1,2 ата). Вода с расширителя 2-ой ступени подается в магистраль сетевой воды, для частичного восполнения потерь сети.

Рисунок 1. Принципиальная тепловая схема ТЭЦ на базе ТУ ПТ-80/100-130/13