Методы измерения пыли в воздухе. Методы нормализации состава воздуха рабочей зоны

Исследование производственной пыли имеет важное гигиеническое значение. Оно позволяет определить источники и причины, постоянство или периодичность образования пыли, ее количественную и качественную характеристику, выявить значение пыли в развитии профессиональных заболеваний и обосновать профилактические мероприятия.

При санитарном исследовании пробы воздуха берут на рабочем месте в зоне дыхания рабочего, а также на расстоянии не более 1-1,5 м, на высоте 1,5 м от пола (почвы) с учетом моментов наибольшего пылеобразования. При оценке эффективности обеспыливающих устройств пробы воздуха отбирают в момент работы или выключения вентиляции или в воздуховоде перед фильтром и после него.

Периодический гигиенический контроль предполагает кратковременное разовое измерение концентрации пыли. Постоянный контроль осуществляется с помощью автоматических приборов и систем или индивидуальными пылеотборниками. Разрабатываются автоматические системы с дистанционной передачей информации и автоматическим управлением средствами борьбы с пылью. Экспресс-пылемеры - портативные приборы, измеряющие концентрацию пыли за период до 5 минут.

Приборы, аппаратура и устройства, используемые при проведении пылевого контроля на производстве: аспиратор, автоматический пробоотборник, концентратомер радиоизотопный, дозиметр пыли индивидуальный, пробоотборник индивидуальный, пробоотборные устройства.

Среднесменные концентрации - это концентрации аэрозоля, определяемого по результатам отбора проб в зоне дыхания рабочих или в рабочей зоне за период не < 75% продолжительности смены (при основных и вспомогательных технологических операциях, перерывах в работе). Эти концентрации определяются в соответствии с периодичностью медицинских осмотров, а также при изменении технологического процесса, санитарно-технических устройств. Полученные данные обрабатываются графоаналитическим и расчетным методами.



Определение содержания пыли в воздухе весовым методом (гравиметрия).

Метод является точным и объективным. Через аналитический фильтр просасывается определенный объем воздуха, массу всей пыли рассчитывают по привесу фильтра. Для поглощения аэрозолей из воздуха используют фильтры из тонких волокон - аналитические фильтры аэрозольные (АФА) из ткани. Фильтры АФА обладают высокой задерживающей способностью, практически полностью задерживают аэрозоли. Изготавливают круглые аналитические фильтры АФА различных марок и специальные стандартные патроны (аллонжи), куда вставляются фильтры. Для отбора проб воздуха применяют аспираторы. Электрический аспиратор состоит из воздуходувки, электромотора и реометров для определения скорости просасывания воздуха. С помощью электроаспираторов можно отобрать одновременно несколько проб со скоростью до 20 л/мин, но несколько проб со скоростью до 20 л/мин. При отсутствии источника электричества или во взрывоопасных условиях (шахтах), ряде химических предприятий используют эжекторный аспиратор. Исходя из целей, которые стоят во время исследования, устанавливается длительность отбора проб воздуха. Привес фильтра должен составлять не менее 1-5 мг и не более 25-50 мг.

Счетный метод (кониометрический) используется реже, чем весовой. Счетные показатели при оценке запыленности выражаются числом пылевых частиц в 1 см 3 воздуха. При этом проводится определение степени дисперсности пыли с использованием микроскопа. Для характеристики дисперсности пыли определяют процентное содержание частиц, имеющих размеры до 2 мкм, 2-5 мкм, 6-10 мкм и больше 10 мкм. Чаще используют метод микроскопии просветленных фильтров АФА или препаратов, приготовленных по методу экранирования или осаждения. При экранировании предметное стекло помещают в вертикальной плоскости, при осаждении - в горизонтальной плоскости. Через определенный промежуток времени на него накладывают покровное стекло и производят исследование под микроскопом. Метод просветления проводится следующим образом: фильтр укладывают фильтрующей поверхностью на предметное стекло и держат в течение нескольких минут над парами ацетона, подогреваемого на водяной бане. Ткань фильтра расплавляется, на стекле фиксируются пылевые частицы. Затем производят микроскопирование пыли, при этом используют объектив - микрометр и окулярный микрометр. Подсчитывают не менее 100 пылевых частиц, определяют их размеры. Одновременно описывают морфологию пылевых частиц, их конфигурацию, характер краев.

Самостоятельная работа студентов

Определение запыленности учебной аудитории весовым способом.

  1. Подготовить электроаспиратор для отбора проб пыли.
  2. Подготовить фильтры к работе. Взвесить фильтр на торсионных весах, вложить его в бумажную обойму, на которой записать вес фильтра.
  3. Вставить фильтры в аллонжи и при помощи резиновой трубки соединить их с аспиратором (две параллельные пробы).
  4. Наметить точки отбора проб воздуха с учетом определения запыленности воздуха.
  5. Измерить и записать температуру воздуха в помещении и атмосферное давление.
  6. Подключить электроаспиратор к электросети.
  7. Установить штатив с фильтрами в горизонтальной
    плоскости в месте забора пробы пыли.
  8. Включить электроаспиратор, отрегулировать скорость протягивания воздуха (по верхнему краю поплавка реометра), установить ее на уровне 15 л/мин.
  9. Длительность отбора проб воздуха - не менее 30 минут.

10. После забора проб воздуха отключить электроаспиратор, взвесить фильтры, записать время отбора проб пыли.

11. Определить привес фильтра (ДQ). Из массы фильтра после взятия пробы (Q) вычитают первоначальную массу (Q 0): ДQ=Q –Q 0 .

12. Определить объем протянутого при отборе пробы воздуха (при данной температуре): V t = vt,

где v - скорость протягивания воздуха, л/мин; t - время протягивания воздуха,

13. Объем протянутого при отборе пробы воздуха приводится к нормальным условиям:

V 0 = Vt · 273 · B

(273 + t) · 760

где t - температура воздуха в помещении, °С;

В - барометрическое давление в момент отбора, мм. рт. ст.

14. Определить весовую концентрацию пыли:

X = ∆Q · 1000 мг/м 3 .

v Составить заключение о соответствии запыленности санитарным требованиям.

Ситуационная задача

В литейном цехе на рабочем месте обрубщика запыленность воздуха составляет 30 мг/м 3 , при содержании свободной двуокиси кремния 70%. Местная вытяжная вентиляция представлена в виде решетки от стола.

Проведен медосмотр рабочего С, по профессии - обрубщик, возраст 45 лет, стаж работы в цехе 10 лет. Предъявлял жалобы на кашель без мокроты, одышку при физическом напряжении. Перкуторно обнаружен легочный звук с коробочным оттенком, преимущественно в нижних отделах легких. Дыхание жесткое с наличием сухих хрипов. Рентгенологически обнаружено: легочные поля умеренно эмфизематозны, легочный рисунок деформирован преимущественно в нижних отделах легких, на фоне которого определяются единичные узелковые образования.

Вопросы:

Укажите оздоровительные мероприятия.

Эталон ответа:

Условия труда - неблагоприятные. На это указывают: превышение ПДК свободной двуокиси кремния в 15 раз, неэффективная вентиляция.

У рабочего - силикоз I стадии.

Необходимо проведение технологических санитарно-технических, медико-профилактических мероприятий, направленных на снижение уровней запыленности в данном производстве.

ПРОТОКОЛ исследования и оценки запыленности воздуха

В __

наименование помещения, участка

Дата и время исследований _______________________________________

Исходный вес фильтра _____________________________________________

3. Вес фильтра после аспирации ______________________________________

4. Объем аспирированного воздуха ___________________________________

Объем воздуха, приведенный к нормальным условиям

__________________________________________________________________

Концентрация пыли в воздухе ___________________________________ мг/м 3

ЗАКЛЮЧЕНИЕ: указать - превышает ли обнаруженное содержание пыли ее ПДК для воздуха рабочей зоны (применительно для нетоксической пыли или с учетом химического состава) ____________________________________

Определить дисперсность пыли путем отсчета размеров пылинок

_____________________________________________________________

10. Заключение по дисперсности пыли _______________________________

_____________________________________________________________

Контрольные вопросы:

Классификация производственной пыли.

Физико-химические свойства производственных аэрозолей.

Этиологическое значение пыли в развитии различных заболеваний.

Как классифицируются пневмокониозы?

Какие проводятся оздоровительные мероприятия для профилактики пылевых заболеваний?

Охарактеризовать весовой метод оценки промышленной пыли.

Охарактеризовать счетный метод оценки промышленной пыли.

Контрольно-обучающие тесты:

  1. Скорость оседания аэрозоля зависит от:

а) электрозаряженности;

б) консистенции;

г) удельного веса.

2. Аэрозоли дезинтеграции чаще имеют форму:

а) кристаллов;

б) шарообразную;

в) глыбок.

3. Наиболее патогенными для легочной ткани являются аэрозоли с размером частиц:

а) 0,3-0,4 мкм;

б) 1-2 до 5 мкм;

в) более 5 мкм.

4. Какой из названых пневмокониозов возникает при действии органической пыли?

а) сидероз;

б) биссиноз;

в) силикоз;

г) асбестоз.

5. Основные изменения рентгенологической картины при силикозе:

а) усиление и деформация легочного рисунка;

б) мелкоузловые образования;

в) уплотнение корней легких;

г) «обрубленность» корней легких;

д) фиброз.

6. Агрессивность пыли увеличивается от большого содержания:

а) асбеста;

б) угольной пыли;

в) талька;

г) свободной двуокиси кремния.

7. Больной предъявляет жалобы на кашель, одышку, боль в груди, слабость. В легких: эмфизема, бронхит, сухой плеврит. Рентгенологически – явления межуточного склероза. Какое профессиональное заболевание вызывает эти явления?

а) асбестоз;

б) антракоз;

в) силикоз.

8. При морфологической картине в легких узелковая форма пневмосклероза характерна при:

а) талькозе;

б) сидерозе;

в) силикозе;

г) асбестозе.

9. Какие мероприятия являются наиболее радикальными при борьбе с пылью?

а) технические;

б) санитарно-технические;

в) медико-профилактические.

10. Индивидуальные приспособления для защиты органов дыхания от пыли:

а) фильтрующие противогазы;

б) шланговые противогазы;

в) марлевые повязки;

г) респираторы.

Практическая работа

Методы определения запыленности воздуха

Запыленность воздуха можно определить гравиметрическим (весовым), счетным (микроскопическим), фотометрическим и некоторыми другими методами.

Удаление пыли из воздуха может быть осуществлено различными способами: аспирационным, основанной на просасывании воздуха через фильтр; седиментационными, основанный на процессе естественного оседания пыли на стеклянные пластинки или банки с последующим подсчетом массы пыли, осевший на 1 м поверхности; с помощью электроосаждения, принцип которого заключается в том, что создается электрическое поле большого напряжения, в котором пылевые частицы электризуются и притягиваются к электродам.

В санитарно-гигиенической практике основным методом определения запыленности принят гравиметрический метод, потому что при постоянстве химического состава первичное значение имеет масса пыли, задержалась в организме человека. Определение только массы пыли не дает полной картины его вредности для человека и технологического процесса, так как при одинаковой массе может быть разный химический, гранулометрический состав пыли, что сказывается на его воздействии на человека, оборудования и технологии. Полная характеристика пыли состоит из его массы, содержащейся в единице объема воздуха, химического и дисперсного состава.

Счетный (микроскопический) метод дает возможность определить общее количество пылевых частиц в единице объема воздуха и соотношение их размеров. Для этого пыль, содержащаяся в определенном объеме воздуха, осаждают на стекло, покрытое прозрачной клейкой пленкой. Под микроскопом определяют форму, количество и размеры пылевых частиц.

Качественную характеристику пыли определяют фотометрическим методом с Помощью текущего ультрафотометра, которым регистрируются отдельные пылевые частицы с помощью сильного бокового света.

Для отделения пыли от воздуха применяются различные фильтры, которые задерживают пылевые частицы размером до 0,1 мкм и более, в зависимости от размера пор фильтра. Такие фильтры выпускаются во многих странах. Материал фильтров может быть различным в зависимости от его назначения: целлюлоза, синтетические материалы, асбест (для определения горючих частиц пыли). Также применяются комбинированные фильтры. Выпускаются специальные фильтры, пропитанные иммерсионных маслом, что делает их прозрачными - это и позволяет дополнительно делать микроскопические исследования пыли.

В Украине чаще всего применяются фильтры АФА (аналитический фильтр аэрозольный) круглой формы с плоскостями фильтрации 3; 10, 20 см2, которые имеют опорное кольцо, фильтрующий элемент и защитное бумажное кольцо с выступлением. Фильтрующий элемент состоит из равномерного слоя ультратонких волокон из полимера на марлевой основе или без нее (фильтр Петрянова). Фильтры позволяют работать с ними без предварительного подсушивания через гидрофобные свойства полимера.

Методы нормализации состава воздуха рабочей зоны

Существует много различных способов и мер, предназначенных для поддержания чистоты воздуха производственных помещений в соответствии с требованиями санитарных норм. Все они сводятся к конкретным мерам:

1. Предотвращение проникновения вредных веществ в воздухе рабочей зоны за счет герметизации оборудования, уплотнения соединений, люков и отверстий, совершенствование технологического процесса.

2. Удаление вредных веществ, попадающих в воздух рабочей зоны, за счет вентиляции, аспирации или очистки и нормализации воздуха с помощью кондиционеров.

3. Применение средств защиты человека.

Герметизация и уплотнение являются основными мерами по совершенствованию технологических процессов, в которых используются или образуются вредные вещества. Применение автоматизации позволяет вывести человека из загрязненного помещения в помещение с чистым воздухом. Совершенствование технологических процессов позволяет заменять вредные вещества безвредными, отказываться от применения пылящих процессий, заменять твердое топливо на жидкое или газообразное, устанавливать газ, пылеуловители в технологический цикл и др.

При несовершенства технологии, когда избежать проникновения вредных веществ в воздух не удается, применяют их интенсивное удаление с помощью вентиляционных систем (газ, пар, аэрозоли) или аспирационных систем (твердые аэрозоли). Установка кондиционеров воздуха в помещениях, где есть особые требования к его качеству, создает нормальные микроклиматические условия для работающих.

Особые требования предъявляются к помещениям, где проводятся работы с вредными веществами, пылящих. Так, пол, стены, потолок должны быть гладкими, легко мыться. В цехах, где выделяется пыль, регулярно делают влажную или вакуумное уборки.

В помещениях, где нельзя создать нормальные условия, соответствующие нормам микроклимата, применяют средства индивидуальной защиты (313).

Согласно ГОСТ 12.4.011-87 "ССБТ Средства защиты работающих. Классификация", все 313, в зависимости от назначения, делятся на следующие классы: изолирующие костюмы, средства защиты органов дыхания, одежда специальная защитная, средства защиты ног, средства защиты рук, средства защиты головы, средства защиты лица, средства защиты глаз, средства защиты органов слуха, средства защиты от падения с высоты и другие меры предосторожности, защитные дерматологические средства, средства защиты комплексные.

Эффективное применение 313. зависит от их правильного выбора и условий эксплуатации. При выборе необходимо учитывать конкретные условия производства, вид и длительность воздействия вредного фактора, а также индивидуальные особенности человека. Только правильное применение 313 может максимально защитить работающего. Для этого работники должны быть ознакомлены с ассортиментом и назначением 313.

Для работы с ядовитыми и загрязняющих веществ пользуются спецодеждой - комбинезонами, халатами, фартуками и др.; для защиты от кислот и щелочей - резиновой обувью и перчатками. Для защиты кожи, рук, лица, шеи применяют защитные кремы и пасты: антитоксические, водостойкие, Жиростойкие. Глаза от возможных ожогов и аэрозолей защищают очками с герметичной оправой, масками, шлемами.

К средствам индивидуальной защиты органов дыхания (СИЗОД) относятся респираторы, промышленные противогазы и изолирующие дыхательные аппараты, применяемые для защиты от вредных веществ (аэрозолей, газов, паров), находящихся в окружающей воздухе.

По принципу действия СИЗОД подразделяются на фильтрующие (применяются при наличии в воздухе свободного кислорода не менее 18% и ограниченного содержания вредных веществ) и изолирующие (при недостаточном для дыхания содержания в воздухе кислорода и неограниченного количества вредных веществ).

По назначению фильтрующие СИЗОД делятся на:

противопылевые - для защиты от аэрозолей (респираторы ШБ-1, "Лепесток", "Кама", "Снежок", У-2К, РП-К, "Астра-2", Ф-62Ш, РПА и др.);

противогазовые - для защиты от газопароподибних вредных веществ (респираторы РПГ-67А, РПГ-67В, РПГ-67КД, противогазы марок А, В, КД, Г, Е, СО, М, БКФ и др.);

газопылезащитные - для защиты от парогазоподибних и аэрозольных вредных веществ одновременно (Респираторы Ру 60М, "Снежок ПГ", "Лепесток-Г");

изолирующие аппараты - бывают шланговые и автономные.

Изолирующие шланговые аппараты предназначены для работы в атмосфере, содержащий менее 18% кислорода. Они имеют длинный шланг, по которому подается воздух для дыхания с чистой зоны. Недостатки их в том, что дыхательный шланг мешает работать, не позволяет свободно двигаться (противогаз шланговый ПШ-И без принудительной подачи воздуха, длина шланга 10 м; ПШ-2 с воздуходувкой - обеспечивает работу двух человек одновременно, длина шлангов 20 м; респиратор для художников РМП-62; пневмошлемы ЛИЗ-4, ЛИЗ-5, миотом-49 - работают от компрессорной воздушной линии).

Изолирующие автономные дыхательные аппараты работают от автономного химического источника кислорода или от баллонов с воздухом или дыхательной смесью. Они предназначены для выполнения спасательных работ или эвакуации людей из загазованной зоны.

Саморятивиик шахтный малогабаритный ШСМ-1. Имеет химический источник кислорода. Срок пользования 20-100 минут в зависимости от интенсивности расходования кислорода (энергозатрат), вес 1,45 кг.

Респиратор изолирующий вспомогательный РВЛ-1. Имеет баллон со сжатым кислородом и регенеративный химический патрон для регенерации кислорода. Работает 2:00, вес 9 кг.

Респиратор "Урал-7". Принцип действия такой же, как в респиратора РВЛ-И, но он более габаритный. Действует 5:00, весит 14 кг. Носится за плечами, масс амортизационные устройства для удобства ношения.

Респиратор Р-30 имеет такую ​​же систему жизнеобеспечения, и приведенный выше. Рассчитан на 4:00 действия, весит 11,8 кг.

Дыхательный аппарат АСВ-2 состоит из 2-х воздушных баллонов, маски или загубника, шланга, редуктора, имеет манометр для контроля за давлением воздуха, предохранительный клапан и др. Предназначен для защиты органов дыхания в условиях загрязненной атмосферы.

Уважаемые читатели, в этой статье мы поговорим о том, как определяется категория помещения с пылью.

Несмотря на то, что математический аппарат СП 12.13130.2009, который предназначен для определения категории пожарной опасности помещения с пылью, достаточно прост, определение ряда параметров вызывает определенные трудности.

Давайте рассмотрим все по порядку. Для начала следует отметить, что помещения с пылью могут относиться к категории Б по взрывопожарной или к по взрывопожарной опасности.

Прежде чем переходить к расчету на принадлежность помещения к одной из категорий В по пожарной опасности, необходимо расчетным путем обосновать, относится ли помещение, где возможно образование аэровзвеси, к категории Б по взрывопожарной опасности.

Основные расчетные формулы содержатся в разделе А.3 Приложения А СП 12.13130.2009.

В соответствии с формулой А.17 свода правил расчетную массу пыли, взвешенной в помещении в результате аварийной ситуации, следует брать минимальной из двух величин:

— суммы масс взвихрившейся пыли и пыли, вышедшей из аппаратов в результате аварии;

— массы пыли, содержащейся в пылевоздушном облаке, способной при появлении источника зажигания сгореть.

Здесь следует отметить, что не вся пыль способна гореть, т.е. коэффициент участия горючей пыли во взрыве, ≤0,5, что подтверждается формулой А.16 свода правил.

Коэффициент участия взвешенной пыли в горении зависит от фракционного состава пыли, а именно параметром, который называется критический размер частиц.

Для большинства органических пылей (древесная пыль, пластмассы, мука и др.) значение критического размера составляет порядка 200-250 мкм.

Пыль, состоящая из частиц более крупного размера, в горении участвовать не будет, за исключением случаев, когда она сжигается в специальных очагах (топках). Когда определяется категория помещения с пылью, как правило имеем дело либо с полностью мелкодисперсной пылью, размер частиц которой менее критического (например, сахарная пудра), либо с пылью, в состав которой входят частицы различного размера, как больше так и меньше критического. К такой пыли относится древесная пыль, зерновая пыль и др.

Фракционный состав пыли определяется экспериментально путем просеивания через системы специальных сит, которые носят название «фракционатор». В такие данные найти вряд ли возможно, хотя для ряда промышленных пылей (порошков) данные о фракционном составе можно запросить у производителя.

При отсутствии данных принимается, что все частицы пыли имеют размер менее критического, т.е. способны распространять горение. Масса пыли, которая способна выйти из аппарата в результате аварийной ситуации, определяется особенностями технологического процесса.

Масса взвихрившейся пыли – та часть отложившейся пыли, которая может перейти во взвешенное состояние в результате аварийной ситуации.

При отсутствии экспериментальных данных принимается, что 90% массы отложившейся (накопленной) пыли способно перейти в аэровзвесь. Пыль, которая выделяется в небольших количествах в производственном помещении в нормальном режиме работы, оседает на ограждающих конструкциях (стены, пол, потолок), на поверхности оборудования (корпуса технологических аппаратов, транспортные линии и др.), на полу под оборудованием.

На проектируемом производстве определяется периодичность пылеуборок: текущих и генеральных. По СП 12 принимается, что вся пыль, которая оседает на труднодоступных для уборки местах, накапливается там в период между генеральными пылеуборками. Пыль, которая оседает на доступных для уборки местах, накапливается там в период между текущими пылеуборками. Оценка доли пыли, оседающей на той или иной поверхности (доступной или труднодоступной), возможна лишь экспериментальным путем или методами моделирования.

Оценка эффективности пылеулавливания проектируемых производств, как правило, также невозможна, поэтому условно принимается, что вся пыль, выделяющаяся от оборудования в помещение, оседает внутри помещения.

Различным является и количество пыли, оседающей на различных участках поверхности, расположенных в помещении. Пыль, которая выделяется в нормальном режиме, витает в воздухе и за счет силы тяжести постепенно оседает на различных поверхностях.

При этом, ожидается, что наибольшее количество пыли оседает на более низких уровнях помещения, при условии, что источник пыли (оборудование) также расположено на нижнем уровне. Очевидно, что горизонтальные поверхности могут накапливать пыль практически в неограниченных количествах, на вертикальных поверхностях оседает ограниченное количество пыли, зависящее от вида поверхности.

Для , количество пыли, которое оседает на стенах следующее: окрашенные металлические перегородки – 7-10 г/м 2 , кирпичные стены – 40 г/м 2 , бетонные стены – 30 г/м 2 . Скорее всего, приведенные данные можно использовать и для других производств.

Теперь обратимся к формуле для вычисления количества пыли в зависимости от объема пылевоздушного облака. Следует отметить, что какие-либо аналитические выражения, по которым можно вычислить объем пылевоздушного облака, в отечественной литературе отсутствуют.

В зарубежной пожарно-технической литературе такие данные пока тоже не удалось найти, наверное, потому что в США и в Европе такой подход не применяется (имеется ввиду расчет категорий). Поэтому на практике приходится объем облака пыли каким-либо образом оценивать.

Например, можно условно принять за характерную форму облака конус с высотой от пола до источника пыли и основанием с радиусом, превышающим данную высоту в несколько раз. Хотя, не уверен, насколько данное допущение верно, поскольку экспериментальные данные в распоряжении отсутствуют.

Помимо критического размера, определяющим параметром является также стехиометрическая концентрация пыли.

Стехиометрическая концентрация пыли – такая концентрация пыли, при которой происходит ее полное сгорание с учетом количества кислорода, находящегося в единице объема воздуха.

Стехиометрическая концентрация пыли расчетным путем может быть определена лишь для веществ и материалов, для которых известен химический состав. К ним можно отнести большинство полимерных материалов (полиэтилен, полипропилен, полистирол и др.), различные лекарственные препараты, порошки металлов и сплавов.

Для других материалов, например для растительных (древесная и зерновая пыль, чай и др.) и пищевых материалов (мука, сухое молоко, какао и др.), стехиометрическую концентрацию нужно определять либо экспериментально, либо искать химический состав соответствующего материала, из которого состоит пыль.

Определение стехиометрической концентрации сводится к решению следующих последовательных задач:

1. Находится химический состав пыли.

2. Записывается химическое уравнение реакции полного сгорания пыли.

3. Определяется масса кислорода, необходимого для полного сгорания 1 кг пыли.

4. Определяется масса кислорода, содержащаяся в 1 м 3 воздуха, с учетом расчетной температуры.

5. Определяется масса пыли, которая может полностью сгореть в массе кислорода, содержащейся в 1 м 3 воздуха. Полученное значение и есть стехиометрическая концентрация пыли в пылевоздушном облаке.

Определение категории помещения с пылью не учитывает такой показатель пожарной опасности, как нижний концентрационный предел распространения пламени (НКПР). Как правило, концентрация пыли в пылевоздушном облаке при аварийных ситуациях превышает НКПР.

Ну и напоследок пара очень интересных видео о взрывах на производствах с пылью. Даже без знания английского и так все доходчиво и интересно показано. Рекомендую к просмотру!

Жду вас снова на о пожарной безопасности!


МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

«АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

КАФЕДРА «БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ»

ОПРЕДЕЛЕНИЕ ЗАПЫЛЕННОСТИ ВОЗДУХА ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ И РАБОЧИХ ЗОН

Методические указания к выполнению лабораторной работы

Барнаул 2004 г

УДК 613.646: 613.14/15

Определение запыленности воздуха производственных помещений и рабочих зон: Методическое пособие/ Сост.: A. M. Маркова, ; под редакцией.- Барна4. - 12с.

Методические указания содержат сведения о действии пыли на организм человека, методику определения и оценки концентрации пыли в воздухе производственных помещений.

Предназначены для лабораторных занятий со студентами всех специальностей.

© Алтайский государственный аграрный университет

Определение запыленности воздуха в производственных помещениях

ЦЕЛЬ РАБОТЫ : Изучить методику определения и оценки концентрации пыли в воздухе рабочей зоны

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:

1. Ознакомиться с классификацией пыли и действием ее на организм человека

2. Изучить методику определения запыленности в производственных помещениях

3. Определить запыленность воздуха в рабочей зоне согласно заданию

Оборудование : 1. Аспиратор для отбора проб воздуха - модель 822

2. Весы аналитические

3. Фильтры АФА-В-18, АФА-В-10

4. Патрон для фильтра (аллонж)

5. Резиновые трубки

6. Экспериментальная установка

1. ОБЩИЕ СВЕДЕНИЯ О ПЫЛИ


Во многих производствах в силу особенностей технологического процесса, применяемых способов производства, характера сырьевых материалов, промежуточных и готовых продуктов и многих других причин образуется пыль, загрязняющая воздух помещений и рабочих зон. Следовательно, находящаяся в воздухе пыль становится одним из факторов производственной среды, определяющих условия труда работающих.

Пылью называют измельченные или полученные иным путем мелкие частицы твердых веществ, витающие (находящиеся в движении) в воздухе рабочей зоны. Пыль может находиться в двух состояниях: взвешенной в воздухе (аэрозоль) и осевшей на поверхности стен, оборудования, осветительных приборов (аэрогель).

Характер и выраженность вредного действия, прежде всего, зависят от химического состава пыли, который, главным образом, определяется ее происхождением. Важное значение имеет классификация пыли по размеру частиц (дисперсности). Она определяет устойчивость частиц в воздухе и глубину проникания в органы дыхания.

Таблица 1

Классификация производственной пыли

По способу образования

По происхождению

По дисперсности

Возникает при разрушении твердых пород (бурение, дробление, размол), транспортировке и упаковке сыпучих материалов , механической обработке изделий (шлифовка, полировка и др.)

I . Органическая:

а) растительная (злаки, волокна и др.)

б) животная (шерстяная, кожаная и др.)

в) микроорганизмы и продукты их распада

г) искусственная (пластмассовая, пыль красителей и др.)

I . Видимая

Имеет размер свыше 10 мкм и быстро выпадает из воздуха

II . Микроскопиче ская

Имеет размер от 10 до 0,25 мкм и медленно выпадает из воздуха

II . Аэрозоль конденсации

Возникает при испарении и последующей конденсации в воздухе паров металлов и неметаллов (электросварка, испарение металлов при электроплавке и других технологических процессах)

II . Неорганическая:

а) минеральная (кремниевая, силикатная и др.)

б) металлическая (пыль железа, цинка, свинца и др.)

III . Смешанная:

а) минерально-металлическая (например, смесь пыли железа и кремния)

б) органическая и неорганическая (например, пыль злаков и почвы)

III . Ультрамикро скопическая

Имеет размер менее 0,25 мкм, длительно витает в воздухе, подчиняясь законам броуновского движения

По способу образования различают пыли (аэрозоли) дезинтеграции и конденсации. В практических целях производственную пыль классифицируют по способу образования, происхождению, размерам частиц - дисперсности (табл. 1).

2. ДЕЙСТВИЕ ПЫЛИ НА ОРГАНИЗМ ЧЕЛОВЕКА

Вредное влияние производственной пыли на здоровье рабочих зависит от многих факторов.

Различные виды пыли вследствие разных физико-химических свойств представляют различную опасность для работающих и во всех случаях оказывают неблагоприятное действие на организм.

Воздействие нетоксической пыли на органы дыхания вызывает специфическое заболевание, называемые пневмокониозом.

Пневмокониозы - собирательное название, включающее в себя пылевые заболевания легких от воздействия всех видов пыли (силикоз, силикатоз, антракоз).

Наиболее распространенной и тяжелой формой пневмокониоза считается силикоз от выделения пыли, содержащей двуокись кремния. Силикатозы возникают у лиц, работающих в условиях воздействия пыли силикатов, в которых двуокись кремния находится в связанном состоянии с другими соединениями, антракоды - при выдыхании угольной пыли.

Промышленная пыль может приводить к развитию профессиональных бронхитов , пневмоний, астматических ринитов и бронхиальной астмы. Под влиянием пыли развиваются конъюнктивиты, поражения кожи - шероховатость, шелушение, утолщение, огрубение, угри, асбестовые бородавки, экземы, дерматиты и др. Систематическая работа в условиях воздействия пыли предопределяет повышенную заболеваемость рабочих с временной нетрудоспособностью , что связано со снижением защитных иммунобиологических функций организма. Действие пыли могут усугублять тяжелый физический труд, охлаждение, некоторые газы (SO3), приводящие при комбинированном влиянии к более быстрому возникновению и усилению тяжести пневмокониоза. Аэрозоли металлов (ванадий, молибден, марганец, кадмий и др.), пыль ядохимикатов при несоблюдении гигиенических условий труда у рабочих могут вызывать профессиональные заболевания.


Электрозаряженность пылевых частиц влияет на устойчивость аэрозоля и биологическую его активность. Частицы, несущие электрический заряд, в 2-8 раз дольше задерживаются в дыхательном тракте. Электрозаряженность пылинок влияет на активность фагоцитоза (Прим. Фагоцитоз - одна из защитных реакций организма, заключающаяся в активном захвате и поглощении живых клеток и неживых частиц одноклеточными организмами или особыми клетками многоклеточных организмов - фагоцитами.).

Контроль за наличием и содержанием пыли в воздухе рабочей зоны является важнейшей задачей. При анализе производственного процесса должны быть установлены источники и причины образования пыли, дана гигиеническая оценка с учетом качественного состава и количества ее в определенном объеме воздуха. На основании этого оценивается значение пылевого фактора, при необходимости привлекаются сведения о состоянии здоровья рабочих и эти данные позволяют обосновать оздоровительные мероприятия .

Кроме гигиенического значения пылевыделение имеет и другие отрицательные стороны: оно наносит экономический урон, ускоряя износ оборудования и ведя к потере ценных материалов, ухудшает общесанитарное состояние производственной среды, в частности, уменьшает освещенность вследствие загрязнения окон и осветительной арматуры. Некоторые виды пылей - угольная, сахарная и др. могут способствовать возникновению пожаров и взрывов.

3. МЕТОДИКА ОПРЕДЕЛЕНИЯ ЗАПЫЛЕННОСТИ ВОЗДУХА РАБОЧЕЙ ЗОНЫ

3.1. Общие положения

Для проведения мероприятий по созданию здоровых и безопасных условий труда и выбора их оптимального варианта на каждом рабочем месте, где образуется пыль, следует периодически контролировать ее концентрацию. В соответствии с ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны» периодичность контроля (за исключением веществ с остронаправленным механизмом действия) устанавливается в зависимости от класса опасности вредного вещества: для I класса - не реже 1 раза в 10 дней, II класса - не реже 1 раза в месяц, III и IV классов - не реже 1 раза в квартал. При возможном поступлении в воздух рабочей зоны вредных веществ с остронаправленным механизмом действия должен быть обеспечен непрерывный контроль с сигнализацией о превышении ПДК. При установленном соответствии содержания вредных веществ III, IV классов опасности уровню ПДК допускается проводить контроль не реже 1 раза в год.

При определении содержания пыли в рабочей зоне пробы воздуха отбирают на высоте примерно 1,5 м. (что соответствует зоне дыхания) в непосредственной близости к месту работы. Для оценки распространения пыли по помещению пробы воздуха отбирают также в так называемых нейтральных точках, т. е. на некотором расстоянии (1-3-5 м и более) от мест образования пыли, а также в проходах.

Иногда запыленность воздуха необходимо определить для оценки эффективности существующих или реконструированных обеспыливающих устройств. В этих случаях пробы воздуха отбирают до и после их установки во включенном и выключенном состоянии. В период отбора проб воздуха обязательно регистрируются условия отбора: температура и барометрическое давление воздуха на рабочем месте, вид выполняемой операции, факторы, которые могут повлиять на запыленность воздуха (открытые или закрытые фрамуги, включенная или выключенная вентиляция и др.), время и длительность отбора, скорость протягивания воздуха.

Для определения концентрации пыли в воздухе и ее состава используют различные методы, которые можно разделить на две группы:

прямые, основанные на предварительном осаждении пылевых частиц (фильтрационные, седиментационные и др.) с их последующим взвешиванием;

косвенные (механический, вибрационно-частотный, электрический, радиационный и др.). Они обеспечивают определение массовой концентрации пыли на основе измерения, либо перепада давления на фильтрующем материале при прокачивании через него запыленного воздуха, либо частоты (амплитуды) вибрации, либо тока смещения, возникающего в результате трения частиц пыли о стенки корпуса первичного преобразователя, либо интенсивности проникающей радиации через фильтр с пылью и т. д.

Полученное разовое или среднее значение концентрации пыли сравнивают с ПДК (табл. 2).

Таблица 2

Предельно допустимые концентрации (ПДК)

пыли в воздухе рабочей зоны

(ГОСТ 12.1.005-88)

Величина ПДК, Мг/м3

Преимущественное агрегатное состояние

Класс опасности

Особенности действия на организм

1. Пыль, образуемая при ра боте с:

известняком, глиной, карбидом кремния (карборунда), цементом, чугуном

2. Пыль растительного и животного происхождения:

а) зерновая

б) мучная, древесная и др. (с примесью диоксида кремния менее 2%)

Продолжение таблицы 2

в) лубяная, хлопчатобумажная, льняная, шерстяная, пуховая и др. (с примесью диоксида кремния менее 2%

г) с примесью диоксида кремния от 2-10%

3. Углерода пыли:

а) коксы: каменноугольный, пековый, нефтяной, сланцевый

б) антрацит с содержанием в пыли до 5% диоксида кремния

в) другие ископаемые угли с содержанием свободного диоксида кремния до 5%

4. Пыль стеклянного и минерального волокон

5. Пыль табака, чая

6. Нитроаммофоска

7. Калия нитрат

8. Калия сульфат

Примечание: а - аэрозоль;

А - вещества, способные вызывать аллергические заболевания в производственных условиях;

Ф - аэрозоли преимущественно фиброгенного действия.

3.2. Определение запыленности массовым методом

Наиболее распространенный массовый метод определения концентрации пыли основан на прокачивании заданного объема загрязненного воздуха через фильтр, определении привеса пыли на фильтре и последующем вычислении концентрации пыли в воздухе. Полнота поглощения вредных веществ, загрязняющих воздух рабочей зоны, должна соответствовать требованиям ГОСТ 12.1.005-88 и устанавливаться экспериментально.

В качестве фильтрующего материала чаще всего используют аэрозольные фильтры АФА с дисками из ткани ФП (фильтр Петрянова) и ФПП (фильтр перхлорвиниловый Петрянова) с высокой степенью фильтрации (близкой к 100%) за счет своих электростатических свойств. Чаще всего применяют фильтры, выполненные в виде дисков площадью 10 и 18 см, которые закрыты защитными подложками и вложены в пакет из полиэтилена (АФА-В-10, АФА-В-18).

Для протягивания запыленного воздуха через фильтр применяют аспиратор М-822 (рис. 1), работающий от переменного тока напряжением 220 В.

Рис. 1. Аспиратор М-822М для отбора проб воздуха:

1 - корпус аспиратора; 2 - ротаметры; 3 - ручка регулятора расхода просасываемого воздуха; 4 - всасывающие штуцеры ротаметра; 5 - соединительный шланг; 6 - аллонж (патрон); 7 - разгрузочный клапан; 8 - тумблер; 9 - лампочка

В корпусе аспиратора 1 размещены: электродвигатель с воздуходувкой и четыре ротаметра 2, используемых для отбора проб воздуха на содержание пыли. Объем протягиваемого воздуха за единицу времени регулируют ручкой вентилей 3. Всасывающий штуцер 4 ротаметра с помощью резинового шланга 5 соединяют с аллонжем (патроном) 6, представляющий собой полый конус с гнездом и гайкой для крепления в нем фильтра. Разгрузочный клапан 7 служит для предотвращения перегрузки электродвигателя при отборе проб воздуха с малыми скоростями и облегчения пуска аппарата. Прибор включают в работу тумблером 8. При этом загорается лампочка 9 шкал ротаметров и поплавки в них поднимаются потоком воздуха, показывая его расход.

3.3. Практическое задание

На основе изучения методики определения запыленности массовым методом определить концентрацию пыли с помощью лабораторной установки (рис. 2).

Рис. 2. Схема установки для определения запыленности воздуха:

1 - пылевсасывающее устройство (насос); 2 - ротаметр; 3 - пылевая камера; 4 - фильтр; 5 - аллонж (патрон); 6 - соединительный шланг; 7 - ручка регулятора расхода просасываемого воздуха

Последовательность взятия проб воздуха на запыленность:

Взвесить чистый фильтр;

Установить на ротаметре выбранный расход воздуха;

Установить фильтр в патрон;

Подсоединить патрон к пылевой камере;

Включить пылевсасывающий прибор и засечь время;

По истечению установленного времени прибор выключить;

Результаты занести в протокол отчета и сделать выводы;

Привести рабочее место в порядок.

Отбор пыли на фильтр

Фильтр 4 в защитном кольце (рис. 2) вставить в патрон и закрепить в нем прижимной гайкой. Аналогичные операции проводят и для фильтра в кассете. Соединить патрон резиновой трубкой с пылевой камерой 3. На месте взятия пробы аллонж 5 (патрон) укрепить в штатив (или другим способом в зависимости от местных условий) и соединить резиновыми трубками 6 последовательно с ротаметром 2 и пылевсасывающим устройством 1.

Включить аспирационный прибор и установить выбранный расход воздуха по ротаметру с помощью ручки вентиля 7.

Начало и конец отбора отмечают по часам или секундомеру.

В течение всего времени проб отбора необходимо по ротаметру следить за скоростью движения воздуха через аппаратуру.

Продолжительность взятия пробы зависит от степени запыленности воздуха, скорости отбора пробы и необходимой навески пыли на фильтре. Время отбора проб воздуха для токсической пыли составляет 15 мин, для веществ преимущественно фиброгенного действия - 30 мин. За это время отбирают одну или несколько проб через равные промежутки времени, вычисляют среднее значение. Продолжительность отбора пыли можно определить и расчетным путем по формуле:

Влажность" href="/text/category/vlazhnostmz/" rel="bookmark">влажности от 30 до 80% составляет 1 мг.

После окончания взятия пробы патрон с фильтром отключают зажимом от аспирационного прибора и вынимают из патрона фильтр с отобранной пробой. Фильтр складывают пополам пылью внутрь, помещают в среду, в котором он находился до взятия пробы.

При отборе проб на каждый фильтр ведется протокол, записывается дата, место и условия взятия проб воздуха, номер фильтра, скорость и продолжительность взятия пробы.

Расчет концентрации пыли

Фактическую концентрацию пыли рассчитывают по формуле:

https://pandia.ru/text/80/369/images/image006_49.gif" width="147" height="47 src=">

где V - скорость просасывания воздуха по ротаметру, л/мин;

Р - атмосферное давление воздуха в момент отбора пробы, кПа;

t - температура воздуха в момент отбора, оС.

Полученные результаты и значение ПДК Сдоп занести в протокол отчета и сделать выводы о запыленности воздушной среды в месте отбора пробы.

Протокол отчета

Таблица 1

Условия отбора пыли

Таблица 2

Результаты измерения

Вопросы для самоконтроля:

1. Классификация пыли

2. В чем заключается действие пыли на различные организмы человека?

3. Методы определения запыленности воздуха

4. В чем заключается принцип работы аспиратора?

5. В чем заключается методика определения запыленности воздуха массовым методом?

6. Как подготовить аспиратор к работе?

7. Как подготовить фильтры к отбору проб?

8. Виды применения фильтров и их отличие?

10. Требования к условиям отбора пробы

11. Как определить время взятия пробы?

12. Какова цель оценки запыленности воздуха рабочей зоны?

ЛИТЕРАТУРА К РАБОТЕ

1. Каспаров труда и промышленная санитария. - М.; «Медицина». 1977.-С-106-128.

2. ГОСТ 12.1.016-79 Воздух рабочей зоны. Требования к методикам измерения концентраций вредных веществ.

3. ГОСТ 12.1.005-88. ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

4. Р 21.2.755-99 2.2 Гигиена труда. Гигиенические критерии оценки и классификация условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса. Руководство. Минздрав России. Москва 1999 г.

Федеральное агенство морского и речного транспорта

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

«ГОСУДАРСТВЕННЫЙ МОРСКОЙ УНИВЕРСИТЕТ ИМЕНИ АДМИРАЛА Ф.Ф. УШАКОВА»

Кафедра «Безопасность жизнедеятельности»

Практическая работа № 3

на тему:

«Определение класса условий труда по фактору

«ОЦЕНКА ВРЕДНОГО ВОЗДЕЙСТВИЯ ПЫЛЕЙ»»

Курсанта группы 1922

Сомхишвили Ирмы

Проверил: ст.преподаватель

Писаренко Г.П.

Вариант 22

I. ЦЕЛЬ РАБОТЫ

Изучить общие свойства промышленной пыли и требования санитарных норм; ознакомление с устройством и работой аспиратора; определить содержание пыли в воздухе весовым методом и дать санитарную оценку запыленности.

II. ОБЩИЕ СВЕДЕНИЯ О ПРОМЫШЛЕННОЙ ПЫЛИ

Промышленной пылью называют твердые частицы, взвешенные в воздухе, т.е. это дисперсные системы, а именно, аэрозоли, где дисперсной фазой являются частицы размером от 10 -2 до 100 мкм,а дисперсной средой – воздух.

Образование промышленная пыль происходит при перезагрузке и транспортировке сыпучих грузов, механическом измельчении твердых веществ.

К промышленной пыли можно отнести также сажу, образующуюся в результате неполного сгорания топлива в судовых дизелях и парогенераторах.

Промышленную пыль можно количественно охарактеризовать средним размером частиц, кривой распределения по размерам, удельной поверхностью, т.е отношением суммарной поверхности частиц пыли к их массе или объему. Важнейшей характеристикой является концентрация пыли в воздухе.

Пыль проникает в организм человека через органы дыхания, желудочно-кишечный тракт, глаза и кожу. Для человека наибольшую опасность представляют частицы пыли размером менее 10 мкм, что видно из данных, приведенных в Табл.1

Таблица 1

Особую опасность для организма человека представляет пыль, состоящая из частиц токсичного вещества, или пыль, имеющая на поверхности сорбированные токсичные вещества. Например, к токсичным относится пыль каменно - угольного песка, карбида кальция, извести, свинца и др. Особенностью является наличие на поверхности частиц адсорбированных канцерогенных веществ, а именно 3,4-бензпирена – это конденсированный ароматический углеводород, обладающий канцерогенными свойствами, т.е способен вызывать рак при нанесении на кожу или при нанесении под кожу животных.

Вредное действие на организм человека пыли определяется ее содержанием в воздухе рабочих помещений, т.е концентрацией пыли, которая обычно может изменяться от 10 -8 до 10 5 мг/м 3 . Повышенные концентрации пыли вызывают интенсивное вредное действие на организм человека.

По степени воздействия на организм человека вредные вещества (в том числе и аэрозоли) подразделяют на 4 класса опасности:

1-й – вещества чрезвычайно опасные;

2-й – вещества высокоопасные;

3-й – вещества умеренно опасные;

4-й – вещества малоопасные.

Класс опасности вредных веществ устанавливают в зависимости от норм и показателей.

Отнесение вредного вещества к классу опасности производят по показателю, значение которого соответствует наиболее высокому классу опасности. Необходимо также иметь в виду, что некоторые промышленные пыли являются взрывоопасными.

Одной из опасных пылей для организма человека на морском транспорте является зерновая пыль, которая состоит из органических компонентов

(бактерии, споры и т.п) и неорганических (частицы песка, глины, почвы). Содержание двуокиси кремния в зерновой пыли достигает 10%.

Длительный контакт с зерновой пылью может привести к развитию пневмокониоза. При кратковременном воздействии на слизистую оболочку глаз, верхних дыхательных путей вызывается раздражение и развитие воспалительных процессов. При механическом воздействии на кожу возникают пузырьковые высыпания («зерновая чесотка»), возможно, также бактериологическое поражение с сильной головной болью, ознобом, сердцебиением, головокружением и тошнотой («зерновая лихорадка»).

Для предотвращения вредного воздействия промышленных пылей

на организм человека применяют комплекс мероприятий:

Разрабатываются и устанавливаются предельно допустимые концентрации (ПДК) различных пылей в воздухе рабочей зоны;

Проектируются и устанавливаются вентиляционные установки и системы аспирации;

Разрабатываются и применяются индивидуальные средства защиты;

III. ОСНОВНЫЕ ОПЕРАЦИИ И ВЫЧИСЛЕНИЯ ПО АНАЛИЗУ ЗАПЫЛЕННОСТИ РАБОЧЕГО ПОМЕЩЕНИЯ

а) Протокол исследования запыленности

б) Оценка запыленности рабочего места/помещения

1. Для количественной оценки запыленного рабочего помещения необходимо знать массу пыли в единице объема. Определить концентрацию пыли можно различными методами, наиболее простой и надежный – весовой. Сущность метода заключается во взвешивании специального фильтра до и после протягивания через него известного объема запыленного воздуха.

где: С – концентрация пыли в воздухе, мг/м 3 ;

Р 1 – масса фильтра до отбора пыли, мг;

Р 2 – масса фильтра после отбора пыли, мг;

V 0 – объем воздуха в месте пробы, о С.

V o =

где: V – объем воздуха, протянутого через фильтр в условия опыта (при t (o C) и давлении В (гПа);